木质素
低聚物
纤维素
木质纤维素生物量
化学
半纤维素
均分解
解聚
有机化学
密度泛函理论
热解
键离解能
离解(化学)
二聚体
生物量(生态学)
键裂
计算化学
化学工程
催化作用
激进的
工程类
地质学
海洋学
作者
Ross Houston,Thomas Elder,Nourredine Abdoulmoumine
出处
期刊:Energy & Fuels
[American Chemical Society]
日期:2022-01-14
卷期号:36 (3): 1565-1573
被引量:3
标识
DOI:10.1021/acs.energyfuels.1c03238
摘要
Pyrolysis is a promising technology for converting lignocellulosic biomass into chemicals, materials, and fuels. Understanding the fundamental reactions and mechanisms during the fast pyrolysis of lignocellulosic biomass is essential for improving the efficiency of this technology. Investigations of lignin fast pyrolysis reactions and mechanisms have thus far lagged relative to cellulose and hemicellulose and have largely been focused on lignin model dimers and monomers. These studies provide valuable information about the reaction tendencies of individual linkages; however, the complex and varying nature of lignin interunit linkages does not allow direct extrapolation to larger lignin structures. In this study, we computationally investigate homolytic bond scission reactions of a larger, synthesizable model lignin oligomer, containing three major lignin linkages, using density functional theory. The bond dissociation enthalpies of the model oligomer showed the trend for the four lowest BDEs Cα–O (β-5) < Cα–Cβ (β-5) < Cα–O (α-O-4) < Cβ–O (β-O-4). Our results show that the general trends identified in smaller dimer molecules are maintained while the magnitude of the BDEs is increased in the model oligomer. This work is an important first step in developing a library of reaction information for various lignin substructures.
科研通智能强力驱动
Strongly Powered by AbleSci AI