Entropy Hysteresis during Lithiation/Delithiation of NCA/Gr-Si Battery Subjected to Accelerated Calendar Ageing and Cycle Ageing

老化 阳极 材料科学 石墨 电极 熵(时间箭头) 磁滞 复合材料 热力学 化学 冶金 物理 凝聚态物理 医学 物理化学 内科学
作者
Malgorzata Wojtala,Alana Zülke,Robert Burrell,Michael P. Mercer,Harry E. Hoster,David A. Howey
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (4): 528-528
标识
DOI:10.1149/ma2022-014528mtgabs
摘要

The literature surrounding entropy changes accompanying degradation is scarce and limited to solely graphite anode cells. Meanwhile, graphite-silicon blends become frequent in commercial applications due to their considerable capacity advantage. The lithiation/delithiation results in volume changes of the silicon particle, which has been reported to cause an increased hysteresis [1] of the open circuit potential (OCP). Our hypothesis is that entropy reflects certain morphological changes occurring within the electrode and consequently, entropy hysteresis is also higher for electrodes containing silicon. We further postulate that entropy hysteresis increases with cycle age. If the hypothesis is correct, entropy measurement will offer a unique insight into battery degradation among commonly used differential voltage analysis (DVA) and incremental capacity analysis (ICA). To test our hypothesis, we adapted an accelerated entropy measurement method proposed by Osswald et al. [2] on high-energy NCA/Gr-Si cylindrical cells, with ~10 wt % Si and ~90 wt % Gr anode composition. The cells were divided into two groups; the first group was stored at an elevated temperature to act as an example of accelerated calendar ageing, while the second group experienced cycle ageing. Subsequently, we performed DVA and ICA to provide a direct comparison with the entropy results and checked for correlation. In accordance with the hypothesis, the entropy behaved similarly to the OCP. Entropy hysteresis remained stable for calendar aged cells (Fig. 1 a) but increased considerably for cycled cells (Fig. 1 b). Silicon volume expansion and its 'breathing' effect [3,4] caused charge entropy to increase with cycle age. Graphite particles experienced breaking and cracking, which prompted a decrease in discharge entropy during cycling. These combined effects led to the observed rise in entropy hysteresis over time. A direct comparison of entropy profiling with DVA revealed alike characteristics. Based on abrupt energy level changes accompanying phase transitions, entropy profiling was successfully used to track ageing markers, aiding recognition of a loss of active material on positive (LAM PE) and negative (LAM NE) electrodes as well as loss of lithium inventory (LLI). Both DVA and entropy profiling revealed that LLI was the main degradation mode for the calendar aged cell, while LAM NE combined with LLI for the cycled cell. Plotting entropy against voltage allowed for additional observations. Horizontal shift towards higher voltages occurred due to the rise in internal resistance but also LLI. While some authors [5] successfully obtained information about LAM PE and LAM NE from ICA, and an analogy can be performed for entropy profiling, it is difficult to draw definitive conclusions from these results. The fact that entropy profiling reflects microscopic changes occurring within electrodes, and considers also ageing markers, makes it a unique, non-invasive tool among ICA and DVA. However, its application is not straightforward and needs further validation. A possible avenue to be explored is the theoretical simulation of pristine and aged entropy profiles to cross-validate with our experimental data. References: [1] Marco-Tulio F. Rodrigues, James A. Gilbert, Kaushik Kalaga, and Daniel P. Abraham. Insights on the cycling behavior of a highly prelithiated silicon–graphite electrode in lithium-ion cells. JPhys Energy, 2(2), 2020. [2] Patrick J. Osswald, Manuel Del Rosario, Jurgen Garche, Andreas Jossen, and Harry E. Hoster. Fast and Accurate Measurement of Entropy Profiles of Commercial Lithium-Ion Cells. Electrochimica Acta, 177:270–276, 2015. [3] McBrayer, Josefine D. and Rodrigues, Marco-Tulio F. and Schulze, Maxwell C. and Abraham, Daniel P. and Apblett, Christopher A. and Bloom, Ira and Carroll, Gerard Michael and Colclasure, Andrew M. and Fang, Chen and Harrison, Katharine L. and Liu, Gao and Minteer, Shelley D. and Neale, Nathan R. and Veith, Gabriel M. and Johnson, Christopher S. and Vaughey, John T. and Burrell, Anthony K. and Cunningham, Brian Calendar aging of silicon-containing batteries. Nature Energy, 6(9):866–872, 2021. [4] Gabriel M. Veith, Mathieu Doucet, J. Kevin Baldwin, Robert L. Sacci, Tyler M. Fears, Yongqiang Wang, and James F. Browning. Direct Determination of Solid-Electrolyte Interphase Thickness and Composition as a Function of State of Charge on a Silicon Anode. Journal of Physical Chemistry C, 119(35):20339–20349, 2015. [5] Alexander J. Smith, Pontus Svens, Maria Varini, Goran Lindbergh, and Rakel Wreland Lindstrom. Expanded In Situ Aging Indicators for Lithium-Ion Batteries with a Blended NMC-LMO Electrode Cycled at Sub-Ambient Temperature. Journal of The Electrochemical Society, 168(11):110530, 2021. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助量子星尘采纳,获得30
1秒前
大个应助量子星尘采纳,获得30
1秒前
情怀应助量子星尘采纳,获得30
1秒前
丘比特应助林小棠采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
2秒前
酷波er应助量子星尘采纳,获得30
2秒前
orixero应助量子星尘采纳,获得30
2秒前
CodeCraft应助量子星尘采纳,获得30
2秒前
Akim应助量子星尘采纳,获得30
2秒前
华仔应助量子星尘采纳,获得30
2秒前
2秒前
2秒前
爆米花应助量子星尘采纳,获得30
3秒前
3秒前
yanting完成签到,获得积分10
3秒前
4秒前
深情安青应助量子星尘采纳,获得30
4秒前
今后应助geyunjie采纳,获得10
4秒前
李爱国应助量子星尘采纳,获得30
5秒前
善学以致用应助老武采纳,获得10
5秒前
思源应助量子星尘采纳,获得30
6秒前
6秒前
7秒前
田様应助量子星尘采纳,获得30
7秒前
深情安青应助量子星尘采纳,获得30
7秒前
今后应助量子星尘采纳,获得30
7秒前
所所应助量子星尘采纳,获得30
7秒前
陈静发布了新的文献求助30
7秒前
情怀应助量子星尘采纳,获得30
8秒前
量子星尘发布了新的文献求助50
8秒前
jiaaaaa应助萧凡灵采纳,获得150
9秒前
饕餮发布了新的文献求助10
10秒前
10秒前
10秒前
共享精神应助单纯的思松采纳,获得10
11秒前
我是老大应助量子星尘采纳,获得10
11秒前
yao完成签到 ,获得积分10
12秒前
大模型应助量子星尘采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Superabsorbent Polymers 2025 800
Rwandan diaspora online: Social connections and identity narratives 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805195
求助须知:如何正确求助?哪些是违规求助? 5848012
关于积分的说明 15515402
捐赠科研通 4930468
什么是DOI,文献DOI怎么找? 2654642
邀请新用户注册赠送积分活动 1601437
关于科研通互助平台的介绍 1556419