Towards Hybrid-Optimization Video Coding

编码(社会科学) 最优化问题 计算机科学 连续优化 数学优化 离散优化 算法 全局优化 率失真优化 数学 人工智能 多视点视频编码 多群优化 视频处理 视频跟踪 统计
作者
Shuai Huo,Dong Liu,Li Li,Siwei Ma,Feng Wu,Wen Gao
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2207.05565
摘要

Video coding is a mathematical optimization problem of rate and distortion essentially. To solve this complex optimization problem, two popular video coding frameworks have been developed: block-based hybrid video coding and end-to-end learned video coding. If we rethink video coding from the perspective of optimization, we find that the existing two frameworks represent two directions of optimization solutions. Block-based hybrid coding represents the discrete optimization solution because those irrelevant coding modes are discrete in mathematics. It searches for the best one among multiple starting points (i.e. modes). However, the search is not efficient enough. On the other hand, end-to-end learned coding represents the continuous optimization solution because the gradient descent is based on a continuous function. It optimizes a group of model parameters efficiently by the numerical algorithm. However, limited by only one starting point, it is easy to fall into the local optimum. To better solve the optimization problem, we propose to regard video coding as a hybrid of the discrete and continuous optimization problem, and use both search and numerical algorithm to solve it. Our idea is to provide multiple discrete starting points in the global space and optimize the local optimum around each point by numerical algorithm efficiently. Finally, we search for the global optimum among those local optimums. Guided by the hybrid optimization idea, we design a hybrid optimization video coding framework, which is built on continuous deep networks entirely and also contains some discrete modes. We conduct a comprehensive set of experiments. Compared to the continuous optimization framework, our method outperforms pure learned video coding methods. Meanwhile, compared to the discrete optimization framework, our method achieves comparable performance to HEVC reference software HM16.10 in PSNR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺心凝天发布了新的文献求助10
刚刚
3秒前
4秒前
仇悦发布了新的文献求助10
5秒前
现代孤萍完成签到,获得积分10
5秒前
5秒前
林g完成签到,获得积分10
6秒前
7秒前
jia发布了新的文献求助10
8秒前
Sam十九发布了新的文献求助10
9秒前
9秒前
心砚完成签到,获得积分10
9秒前
10秒前
10秒前
qyk完成签到,获得积分10
10秒前
爱大美发布了新的文献求助10
11秒前
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
Lucas应助铁风筝芳芳采纳,获得10
13秒前
酷波er应助mark采纳,获得10
14秒前
羊羔蓉完成签到,获得积分10
14秒前
星星完成签到 ,获得积分10
14秒前
科目三应助Re采纳,获得10
17秒前
17秒前
maox1aoxin完成签到,获得积分0
17秒前
17秒前
luck发布了新的文献求助10
18秒前
p454q完成签到 ,获得积分10
18秒前
Lucas应助此时此刻采纳,获得10
18秒前
科目三应助mimimi采纳,获得10
19秒前
20秒前
alano完成签到 ,获得积分10
21秒前
邓佳鑫Alan应助栗子采纳,获得10
21秒前
Hello应助zhizhi采纳,获得10
22秒前
量子星尘发布了新的文献求助10
22秒前
隐形曼青应助紧张的惜梦采纳,获得10
22秒前
mhpvv发布了新的文献求助10
22秒前
啦啦啦啦发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5793649
求助须知:如何正确求助?哪些是违规求助? 5751081
关于积分的说明 15486624
捐赠科研通 4920583
什么是DOI,文献DOI怎么找? 2649020
邀请新用户注册赠送积分活动 1596334
关于科研通互助平台的介绍 1550891