清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Towards Hybrid-Optimization Video Coding

编码(社会科学) 最优化问题 计算机科学 连续优化 数学优化 离散优化 算法 全局优化 率失真优化 数学 人工智能 多视点视频编码 多群优化 视频处理 视频跟踪 统计
作者
Shuai Huo,Dong Liu,Li Li,Siwei Ma,Feng Wu,Wen Gao
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2207.05565
摘要

Video coding is a mathematical optimization problem of rate and distortion essentially. To solve this complex optimization problem, two popular video coding frameworks have been developed: block-based hybrid video coding and end-to-end learned video coding. If we rethink video coding from the perspective of optimization, we find that the existing two frameworks represent two directions of optimization solutions. Block-based hybrid coding represents the discrete optimization solution because those irrelevant coding modes are discrete in mathematics. It searches for the best one among multiple starting points (i.e. modes). However, the search is not efficient enough. On the other hand, end-to-end learned coding represents the continuous optimization solution because the gradient descent is based on a continuous function. It optimizes a group of model parameters efficiently by the numerical algorithm. However, limited by only one starting point, it is easy to fall into the local optimum. To better solve the optimization problem, we propose to regard video coding as a hybrid of the discrete and continuous optimization problem, and use both search and numerical algorithm to solve it. Our idea is to provide multiple discrete starting points in the global space and optimize the local optimum around each point by numerical algorithm efficiently. Finally, we search for the global optimum among those local optimums. Guided by the hybrid optimization idea, we design a hybrid optimization video coding framework, which is built on continuous deep networks entirely and also contains some discrete modes. We conduct a comprehensive set of experiments. Compared to the continuous optimization framework, our method outperforms pure learned video coding methods. Meanwhile, compared to the discrete optimization framework, our method achieves comparable performance to HEVC reference software HM16.10 in PSNR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ming123ah完成签到,获得积分10
6秒前
xingsixs完成签到 ,获得积分10
13秒前
开心浩阑完成签到 ,获得积分10
22秒前
柚子完成签到 ,获得积分10
28秒前
38秒前
量子星尘发布了新的文献求助10
40秒前
科研通AI5应助Zj采纳,获得10
45秒前
48秒前
科研通AI5应助科研通管家采纳,获得10
48秒前
55秒前
耍酷千亦完成签到 ,获得积分10
1分钟前
张成完成签到 ,获得积分10
1分钟前
Zj完成签到,获得积分10
1分钟前
Zj发布了新的文献求助10
1分钟前
济民财完成签到,获得积分10
1分钟前
搜集达人应助111111111采纳,获得10
1分钟前
Wang完成签到 ,获得积分20
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
111111111发布了新的文献求助10
2分钟前
奈思完成签到 ,获得积分10
2分钟前
轩辕冰夏发布了新的文献求助10
2分钟前
麻花阳完成签到,获得积分10
2分钟前
沙海沉戈完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助20
3分钟前
六一完成签到 ,获得积分10
3分钟前
Glitter完成签到 ,获得积分10
3分钟前
3分钟前
怪杰完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
董姗姗完成签到,获得积分10
4分钟前
水木应助东方越彬采纳,获得20
4分钟前
量子星尘发布了新的文献求助10
5分钟前
xiaoyi完成签到 ,获得积分10
5分钟前
theo完成签到 ,获得积分10
5分钟前
syyyy完成签到 ,获得积分10
5分钟前
5分钟前
所所应助心灵美语兰采纳,获得10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503095
关于积分的说明 11111294
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787789
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292