亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards Hybrid-Optimization Video Coding

编码(社会科学) 最优化问题 计算机科学 连续优化 数学优化 离散优化 算法 全局优化 率失真优化 数学 人工智能 多视点视频编码 多群优化 视频处理 视频跟踪 统计
作者
Shuai Huo,Dong Liu,Li Li,Siwei Ma,Feng Wu,Wen Gao
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2207.05565
摘要

Video coding is a mathematical optimization problem of rate and distortion essentially. To solve this complex optimization problem, two popular video coding frameworks have been developed: block-based hybrid video coding and end-to-end learned video coding. If we rethink video coding from the perspective of optimization, we find that the existing two frameworks represent two directions of optimization solutions. Block-based hybrid coding represents the discrete optimization solution because those irrelevant coding modes are discrete in mathematics. It searches for the best one among multiple starting points (i.e. modes). However, the search is not efficient enough. On the other hand, end-to-end learned coding represents the continuous optimization solution because the gradient descent is based on a continuous function. It optimizes a group of model parameters efficiently by the numerical algorithm. However, limited by only one starting point, it is easy to fall into the local optimum. To better solve the optimization problem, we propose to regard video coding as a hybrid of the discrete and continuous optimization problem, and use both search and numerical algorithm to solve it. Our idea is to provide multiple discrete starting points in the global space and optimize the local optimum around each point by numerical algorithm efficiently. Finally, we search for the global optimum among those local optimums. Guided by the hybrid optimization idea, we design a hybrid optimization video coding framework, which is built on continuous deep networks entirely and also contains some discrete modes. We conduct a comprehensive set of experiments. Compared to the continuous optimization framework, our method outperforms pure learned video coding methods. Meanwhile, compared to the discrete optimization framework, our method achieves comparable performance to HEVC reference software HM16.10 in PSNR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助ZLL采纳,获得10
6秒前
9秒前
木木发布了新的文献求助10
16秒前
木木完成签到,获得积分10
28秒前
33秒前
layers发布了新的文献求助10
36秒前
layers发布了新的文献求助10
51秒前
生动的冰蓝应助咕咕咕采纳,获得10
1分钟前
layers完成签到,获得积分10
1分钟前
1分钟前
binxman发布了新的文献求助10
1分钟前
1分钟前
专注的芷蕾完成签到,获得积分10
1分钟前
binxman完成签到,获得积分10
1分钟前
星辰大海应助YYQ采纳,获得10
1分钟前
情怀应助liuzr采纳,获得10
2分钟前
2分钟前
YYQ发布了新的文献求助10
2分钟前
zc0178应助科研通管家采纳,获得10
2分钟前
2分钟前
春秋发布了新的文献求助10
2分钟前
3分钟前
wykion完成签到,获得积分10
3分钟前
3分钟前
樱桃猴子完成签到,获得积分10
3分钟前
糖伯虎完成签到 ,获得积分10
3分钟前
3分钟前
liuzr发布了新的文献求助10
4分钟前
4分钟前
YYQ完成签到,获得积分10
4分钟前
忧伤的绍辉完成签到 ,获得积分10
4分钟前
樱桃猴子应助科研通管家采纳,获得20
4分钟前
mpenny77发布了新的文献求助10
4分钟前
4分钟前
mpenny77完成签到,获得积分10
5分钟前
柠檬发布了新的文献求助10
5分钟前
Isaac完成签到 ,获得积分10
5分钟前
yexu完成签到,获得积分10
5分钟前
研友_ndDGVn完成签到 ,获得积分10
5分钟前
舒心的晟睿完成签到 ,获得积分10
5分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3294504
求助须知:如何正确求助?哪些是违规求助? 2930450
关于积分的说明 8446056
捐赠科研通 2602612
什么是DOI,文献DOI怎么找? 1420680
科研通“疑难数据库(出版商)”最低求助积分说明 660644
邀请新用户注册赠送积分活动 643433