Towards Hybrid-Optimization Video Coding

编码(社会科学) 最优化问题 计算机科学 连续优化 数学优化 离散优化 算法 全局优化 率失真优化 数学 人工智能 多视点视频编码 多群优化 视频处理 视频跟踪 统计
作者
Shuai Huo,Dong Liu,Li Li,Siwei Ma,Feng Wu,Wen Gao
出处
期刊:Cornell University - arXiv 被引量:2
标识
DOI:10.48550/arxiv.2207.05565
摘要

Video coding is a mathematical optimization problem of rate and distortion essentially. To solve this complex optimization problem, two popular video coding frameworks have been developed: block-based hybrid video coding and end-to-end learned video coding. If we rethink video coding from the perspective of optimization, we find that the existing two frameworks represent two directions of optimization solutions. Block-based hybrid coding represents the discrete optimization solution because those irrelevant coding modes are discrete in mathematics. It searches for the best one among multiple starting points (i.e. modes). However, the search is not efficient enough. On the other hand, end-to-end learned coding represents the continuous optimization solution because the gradient descent is based on a continuous function. It optimizes a group of model parameters efficiently by the numerical algorithm. However, limited by only one starting point, it is easy to fall into the local optimum. To better solve the optimization problem, we propose to regard video coding as a hybrid of the discrete and continuous optimization problem, and use both search and numerical algorithm to solve it. Our idea is to provide multiple discrete starting points in the global space and optimize the local optimum around each point by numerical algorithm efficiently. Finally, we search for the global optimum among those local optimums. Guided by the hybrid optimization idea, we design a hybrid optimization video coding framework, which is built on continuous deep networks entirely and also contains some discrete modes. We conduct a comprehensive set of experiments. Compared to the continuous optimization framework, our method outperforms pure learned video coding methods. Meanwhile, compared to the discrete optimization framework, our method achieves comparable performance to HEVC reference software HM16.10 in PSNR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叙事医学完成签到 ,获得积分10
刚刚
刚刚
EpQAQ发布了新的文献求助10
1秒前
了大憨发布了新的文献求助10
2秒前
2秒前
鱼鱼鱼关注了科研通微信公众号
2秒前
2秒前
史萌完成签到,获得积分10
3秒前
汉堡包应助小正采纳,获得10
3秒前
贪玩心情发布了新的文献求助10
4秒前
哈哈完成签到,获得积分20
4秒前
7907完成签到,获得积分10
5秒前
6秒前
在水一方应助lll采纳,获得10
6秒前
泉水激石发布了新的文献求助10
6秒前
久伴完成签到 ,获得积分10
6秒前
天天快乐应助胡茶茶采纳,获得20
6秒前
7秒前
7秒前
8秒前
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
大蛋老师应助科研通管家采纳,获得10
8秒前
所所应助科研通管家采纳,获得10
8秒前
8秒前
rob完成签到,获得积分10
8秒前
Akim应助科研通管家采纳,获得10
8秒前
大蛋老师应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
大蛋老师应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
xqy关注了科研通微信公众号
9秒前
科目三应助科研通管家采纳,获得10
9秒前
9秒前
Young应助科研通管家采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593807
求助须知:如何正确求助?哪些是违规求助? 4679604
关于积分的说明 14810996
捐赠科研通 4644973
什么是DOI,文献DOI怎么找? 2534682
邀请新用户注册赠送积分活动 1502730
关于科研通互助平台的介绍 1469383