UFS-Net: A unified flame and smoke detection method for early detection of fire in video surveillance applications using CNNs

烟雾 计算机科学 水准点(测量) 火灾探测 人工智能 卷积神经网络 深度学习 环境科学 工程类 废物管理 建筑工程 大地测量学 地理
作者
Ali Hosseini,Mahdi Hashemzadeh,Nacer Farajzadeh
出处
期刊:Journal of Computational Science [Elsevier BV]
卷期号:61: 101638-101638 被引量:41
标识
DOI:10.1016/j.jocs.2022.101638
摘要

Fire is a recurring event that usually causes a lot of social, environmental, ecological, and economic damage in different environments. Therefore, machine vision-based fire detection can be one of the most important tasks in modern surveillance systems. Most of the existing computer vision-based fire detection methods are only able to detect a single case of flame or smoke. In this research, a unified flame and smoke detection approach, termed “UFS-Net,” based on deep learning is proposed. An efficient and tailored convolutional neural network architecture is designed to detect both fire flames and smoke in video frames. UFS-Net is capable of identifying fire hazards by classifying video frames into eight classes: 1) flame, 2) white smoke, 3) black smoke, 4) flame and white smoke, 5) flame and black smoke, 6) black smoke and white smoke, 7) flame, white smoke and black smoke, and 8) normal status. To further increase the reliability of UFS-Net, a decision module based on a voting scheme is applied. In addition, a rich annotated dataset named “UFS-Data” that includes 849,640 images and 26 videos, captured/collected from various data sources and artificial images made in this research, is prepared for training and evaluation of UFS-Net. Extensive experiments conducted on “UFS-Data” and other benchmark datasets (i.e., “Mivia,” “BoWFire,” and “FireNet”), and the comparisons with state-of-the-art methods, confirm the high performance of UFS-Net. All the implementation source codes and the “UFS-Data” are made publicly available at https://github.com/alihosseinice/UFS-Net . • A computer vision-based fire detection method is presented. • A unified flame and smoke detection method based on deep learning is proposed. • A tailored CNN architecture is designed to identify fire flames and smoke. • A decision module based on a voting scheme is applied. • A rich annotated dataset is provided for evaluation of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
1秒前
1秒前
烟花应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
zho应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
SHAO应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
CR7应助科研通管家采纳,获得20
1秒前
anan应助科研通管家采纳,获得10
1秒前
轻松含双发布了新的文献求助20
1秒前
SHAO应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
CR7应助科研通管家采纳,获得20
2秒前
Notdodead应助科研通管家采纳,获得10
2秒前
SHAO应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
Fengliguantou发布了新的文献求助10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
晨珂发布了新的文献求助50
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
领导范儿应助科研通管家采纳,获得10
3秒前
按摩头了发布了新的文献求助10
3秒前
Owen应助feng采纳,获得30
3秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992518
求助须知:如何正确求助?哪些是违规求助? 3533486
关于积分的说明 11262567
捐赠科研通 3273054
什么是DOI,文献DOI怎么找? 1805922
邀请新用户注册赠送积分活动 882858
科研通“疑难数据库(出版商)”最低求助积分说明 809496