UFS-Net: A unified flame and smoke detection method for early detection of fire in video surveillance applications using CNNs

烟雾 计算机科学 水准点(测量) 火灾探测 人工智能 卷积神经网络 深度学习 环境科学 工程类 废物管理 建筑工程 大地测量学 地理
作者
Ali Hosseini,Mahdi Hashemzadeh,Nacer Farajzadeh
出处
期刊:Journal of Computational Science [Elsevier]
卷期号:61: 101638-101638 被引量:41
标识
DOI:10.1016/j.jocs.2022.101638
摘要

Fire is a recurring event that usually causes a lot of social, environmental, ecological, and economic damage in different environments. Therefore, machine vision-based fire detection can be one of the most important tasks in modern surveillance systems. Most of the existing computer vision-based fire detection methods are only able to detect a single case of flame or smoke. In this research, a unified flame and smoke detection approach, termed “UFS-Net,” based on deep learning is proposed. An efficient and tailored convolutional neural network architecture is designed to detect both fire flames and smoke in video frames. UFS-Net is capable of identifying fire hazards by classifying video frames into eight classes: 1) flame, 2) white smoke, 3) black smoke, 4) flame and white smoke, 5) flame and black smoke, 6) black smoke and white smoke, 7) flame, white smoke and black smoke, and 8) normal status. To further increase the reliability of UFS-Net, a decision module based on a voting scheme is applied. In addition, a rich annotated dataset named “UFS-Data” that includes 849,640 images and 26 videos, captured/collected from various data sources and artificial images made in this research, is prepared for training and evaluation of UFS-Net. Extensive experiments conducted on “UFS-Data” and other benchmark datasets (i.e., “Mivia,” “BoWFire,” and “FireNet”), and the comparisons with state-of-the-art methods, confirm the high performance of UFS-Net. All the implementation source codes and the “UFS-Data” are made publicly available at https://github.com/alihosseinice/UFS-Net . • A computer vision-based fire detection method is presented. • A unified flame and smoke detection method based on deep learning is proposed. • A tailored CNN architecture is designed to identify fire flames and smoke. • A decision module based on a voting scheme is applied. • A rich annotated dataset is provided for evaluation of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助Yao采纳,获得30
1秒前
1秒前
俞秋烟完成签到,获得积分10
1秒前
agnway完成签到,获得积分10
1秒前
1秒前
dzdzn完成签到 ,获得积分10
2秒前
2秒前
北彧发布了新的文献求助10
2秒前
3秒前
3秒前
Li发布了新的文献求助10
4秒前
zjy发布了新的文献求助10
4秒前
Winks完成签到,获得积分10
4秒前
smash应助顾里采纳,获得10
5秒前
5秒前
6秒前
ssssxr发布了新的文献求助10
6秒前
呆萌冷风发布了新的文献求助20
6秒前
7秒前
我蔡家豪实名上网完成签到 ,获得积分10
7秒前
8秒前
可爱的函函应助xujiejiuxi采纳,获得10
8秒前
8秒前
yliaoyou完成签到,获得积分10
8秒前
zzq229发布了新的文献求助10
9秒前
xde的玩偶完成签到,获得积分10
9秒前
kyJYbs完成签到,获得积分10
9秒前
10秒前
10秒前
mayxmzhang发布了新的文献求助10
10秒前
NexusExplorer应助积极的硬币采纳,获得10
12秒前
550完成签到,获得积分10
12秒前
George完成签到,获得积分20
13秒前
傲娇的芝麻完成签到,获得积分20
13秒前
13秒前
13秒前
Xu完成签到,获得积分10
14秒前
张大然完成签到 ,获得积分10
14秒前
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299335
求助须知:如何正确求助?哪些是违规求助? 2934244
关于积分的说明 8468073
捐赠科研通 2607711
什么是DOI,文献DOI怎么找? 1423837
科研通“疑难数据库(出版商)”最低求助积分说明 661724
邀请新用户注册赠送积分活动 645397