Automatic assessment of spoken-language interpreting based on machine-translation evaluation metrics

NIST公司 计算机科学 公制(单位) 自然语言处理 机器翻译评价 机器翻译 翻译 人工智能 布鲁 人气 可靠性(半导体) 翻译(生物学) 机器学习 机器翻译软件可用性 心理学 基于实例的机器翻译 物理 信使核糖核酸 基因 社会心理学 经济 功率(物理) 量子力学 化学 程序设计语言 生物化学 运营管理
作者
Xiaolei Lu,Chao Han
出处
期刊:Interpreting [John Benjamins Publishing Company]
卷期号:25 (1): 109-143 被引量:2
标识
DOI:10.1075/intp.00076.lu
摘要

Abstract Automated metrics for machine translation (MT) such as BLEU are customarily used because they are quick to compute and sufficiently valid to be useful in MT assessment. Whereas the instantaneity and reliability of such metrics are made possible by automatic computation based on predetermined algorithms, their validity is primarily dependent on a strong correlation with human assessments. Despite the popularity of such metrics in MT, little research has been conducted to explore their usefulness in the automatic assessment of human translation or interpreting. In the present study, we therefore seek to provide an initial insight into the way MT metrics would function in assessing spoken-language interpreting by human interpreters. Specifically, we selected five representative metrics – BLEU, NIST, METEOR, TER and BERT – to evaluate 56 bidirectional consecutive English–Chinese interpretations produced by 28 student interpreters of varying abilities. We correlated the automated metric scores with the scores assigned by different types of raters using different scoring methods (i.e., multiple assessment scenarios). The major finding is that BLEU, NIST, and METEOR had moderate-to-strong correlations with the human-assigned scores across the assessment scenarios, especially for the English-to-Chinese direction. Finally, we discuss the possibility and caveats of using MT metrics in assessing human interpreting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助Pppo采纳,获得30
刚刚
田様应助耶椰耶采纳,获得20
1秒前
daydayup发布了新的文献求助10
1秒前
yayyaya完成签到 ,获得积分10
1秒前
1秒前
2秒前
wu61发布了新的文献求助10
2秒前
寒食完成签到,获得积分0
2秒前
2秒前
甜甜发布了新的文献求助10
2秒前
3秒前
3秒前
优秀的枕头完成签到,获得积分10
3秒前
huo应助小迪采纳,获得10
4秒前
山手完成签到,获得积分20
5秒前
贺贺发布了新的文献求助20
5秒前
cindy发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
CHEN发布了新的文献求助20
7秒前
吴必胜完成签到,获得积分10
8秒前
忐忑的远山发布了新的文献求助100
8秒前
8秒前
小小怪兽完成签到,获得积分20
8秒前
9秒前
9秒前
大爆炸发布了新的文献求助20
10秒前
10秒前
10秒前
10秒前
11秒前
11秒前
kisaragiidu完成签到,获得积分10
11秒前
852应助5555采纳,获得10
11秒前
单纯夏烟发布了新的文献求助10
11秒前
爆米花应助cindy采纳,获得10
12秒前
耍酷的傲白完成签到,获得积分10
12秒前
毛豆应助schyoung采纳,获得10
12秒前
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305256
求助须知:如何正确求助?哪些是违规求助? 2939124
关于积分的说明 8491585
捐赠科研通 2613571
什么是DOI,文献DOI怎么找? 1427501
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647747