协方差
数学
自回归模型
协方差矩阵
Wishart分布
系列(地层学)
协方差函数
协方差函数
应用数学
肯定性
协方差交集
条件方差
参数统计
有理二次协方差函数
计量经济学
ARCH模型
特征向量
统计
正定矩阵
波动性(金融)
物理
生物
古生物学
量子力学
多元统计
作者
Luc Bauwens,Edoardo Otranto
出处
期刊:Journal of Financial Econometrics
[Oxford University Press]
日期:2022-03-03
卷期号:21 (4): 1376-1401
标识
DOI:10.1093/jjfinec/nbac007
摘要
Abstract Time series of realized covariance matrices can be modeled in the conditional autoregressive Wishart model family via dynamic correlations or via dynamic covariances. Extended parameterizations of these models are proposed, which imply a specific and time-varying impact parameter of the lagged realized covariance (or correlation) on the next conditional covariance (or correlation) of each asset pair. The proposed extensions guarantee the positive definiteness of the conditional covariance or correlation matrix with simple parametric restrictions, while keeping the number of parameters fixed or linear with respect to the number of assets. Two empirical studies reveal that the extended models have superior forecasting performances than their simpler versions and benchmark models.
科研通智能强力驱动
Strongly Powered by AbleSci AI