Deep Siamese Semantic Segmentation Network for PCB Welding Defect Detection

计算机科学 分割 深度学习 人工智能 编码器 Softmax函数 交叉熵 模式识别(心理学) 特征(语言学) 图像分割 语言学 操作系统 哲学
作者
Zhigang Ling,Aoran Zhang,Dexin Ma,Yuxin Shi,He Wen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:36
标识
DOI:10.1109/tim.2022.3154814
摘要

Deep learning has been widely used in recent years for printed circuit board (PCB) defect detection because of its excellent performance. However, deep-learning-based approaches often suffer from the over-fitting problem due to the lack of sufficient training data in real applications. Meanwhile, these approaches still have some challenges to detect these defects with small sizes and irregular shapes. To address these problems, this article has developed a novel deep Siamese semantic segmentation network which integrates the similarity measurement of the Siamese network with the encoder–decoder semantic segmentation network for PCB welding defect detection. This network includes two encoders sharing weighted values, a decoder, and some correlation modules, in which the decoder integrates deep features from two decoders with their feature difference computed by some correlation modules via skipping connections to recover spatial information on multiple output layers, and thus this proposed network can perform PCB welding small defect semantic segmentation. Moreover, via these correlation modules, this proposed network can pay more attention to semantic difference and further alleviate the over-fitting issue because of insufficient defect samples. Finally, we propose a combined loss function which combines the weighted cross-entropy loss, the Lovasz softmax loss, and the weighted precision–recall loss for network training to further improve small defect segmentation and recall improvement. Experimental results demonstrate that the proposed network can be trained on limited training images and achieve high efficiency and outstanding effects for PCB welding small defect segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
司徒迎曼发布了新的文献求助10
1秒前
runtang完成签到,获得积分10
1秒前
1秒前
1秒前
sdf发布了新的文献求助10
2秒前
2秒前
a成完成签到 ,获得积分10
2秒前
line发布了新的文献求助10
2秒前
3秒前
英姑应助研友_qZ6V1Z采纳,获得10
3秒前
JamesPei应助宋博凯采纳,获得10
3秒前
鱼儿完成签到,获得积分10
3秒前
3秒前
菜鸡学VASP发布了新的文献求助10
4秒前
zzzhhh完成签到,获得积分20
5秒前
5秒前
5秒前
6秒前
6秒前
mmmmmm发布了新的文献求助10
6秒前
LFC发布了新的文献求助10
6秒前
Ava应助好玩和有趣采纳,获得10
6秒前
李子完成签到,获得积分10
6秒前
ZYCong发布了新的文献求助10
7秒前
7秒前
阿睿发布了新的文献求助10
8秒前
大个应助司徒迎曼采纳,获得10
8秒前
8秒前
啊喃发布了新的文献求助10
9秒前
打打应助林林总总采纳,获得10
9秒前
9秒前
9秒前
Zzskrrrr发布了新的文献求助10
10秒前
董不懂完成签到,获得积分10
10秒前
哎嘿应助认真科研采纳,获得10
10秒前
吴梅应助认真科研采纳,获得10
10秒前
泡芙完成签到 ,获得积分10
10秒前
yuan1yuan2完成签到 ,获得积分10
11秒前
迷人的千易完成签到,获得积分10
13秒前
Akim应助chu采纳,获得10
13秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151396
求助须知:如何正确求助?哪些是违规求助? 2802862
关于积分的说明 7850843
捐赠科研通 2460290
什么是DOI,文献DOI怎么找? 1309701
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760