Deep Siamese Semantic Segmentation Network for PCB Welding Defect Detection

计算机科学 分割 深度学习 人工智能 编码器 Softmax函数 交叉熵 模式识别(心理学) 特征(语言学) 图像分割 语言学 哲学 操作系统
作者
Zhigang Ling,Aoran Zhang,Dexin Ma,Yuxin Shi,He Wen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:67
标识
DOI:10.1109/tim.2022.3154814
摘要

Deep learning has been widely used in recent years for printed circuit board (PCB) defect detection because of its excellent performance. However, deep-learning-based approaches often suffer from the over-fitting problem due to the lack of sufficient training data in real applications. Meanwhile, these approaches still have some challenges to detect these defects with small sizes and irregular shapes. To address these problems, this article has developed a novel deep Siamese semantic segmentation network which integrates the similarity measurement of the Siamese network with the encoder–decoder semantic segmentation network for PCB welding defect detection. This network includes two encoders sharing weighted values, a decoder, and some correlation modules, in which the decoder integrates deep features from two decoders with their feature difference computed by some correlation modules via skipping connections to recover spatial information on multiple output layers, and thus this proposed network can perform PCB welding small defect semantic segmentation. Moreover, via these correlation modules, this proposed network can pay more attention to semantic difference and further alleviate the over-fitting issue because of insufficient defect samples. Finally, we propose a combined loss function which combines the weighted cross-entropy loss, the Lovasz softmax loss, and the weighted precision–recall loss for network training to further improve small defect segmentation and recall improvement. Experimental results demonstrate that the proposed network can be trained on limited training images and achieve high efficiency and outstanding effects for PCB welding small defect segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
艾斯完成签到 ,获得积分10
刚刚
2秒前
天天快乐应助陈曦采纳,获得10
2秒前
在水一方应助MEDwhy采纳,获得10
3秒前
科研通AI5应助YJ888采纳,获得10
6秒前
农夫完成签到,获得积分0
6秒前
6秒前
8秒前
wonder123发布了新的文献求助10
13秒前
14秒前
15秒前
Lyn发布了新的文献求助10
16秒前
柴胡完成签到,获得积分10
16秒前
大个应助wonder123采纳,获得10
17秒前
FashionBoy应助lan采纳,获得10
18秒前
善学以致用应助doiwanado采纳,获得10
19秒前
20秒前
20秒前
眼睛大如天完成签到,获得积分10
21秒前
slx发布了新的文献求助100
22秒前
风趣依瑶发布了新的文献求助10
23秒前
PAN完成签到,获得积分20
23秒前
haha发布了新的文献求助10
23秒前
23秒前
科研民工_郭完成签到,获得积分10
25秒前
吕子尚发布了新的文献求助10
26秒前
淡定落雁发布了新的文献求助10
26秒前
cis2014发布了新的文献求助10
26秒前
Mxj0607发布了新的文献求助10
27秒前
28秒前
wudizhuzhu233完成签到,获得积分10
28秒前
赘婿应助123456采纳,获得10
30秒前
30秒前
31秒前
31秒前
31秒前
不一样的烟火完成签到,获得积分10
33秒前
hmd_150完成签到,获得积分10
33秒前
sssss发布了新的文献求助10
34秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176