Deep Siamese Semantic Segmentation Network for PCB Welding Defect Detection

计算机科学 分割 深度学习 人工智能 编码器 Softmax函数 交叉熵 模式识别(心理学) 特征(语言学) 图像分割 语言学 哲学 操作系统
作者
Zhigang Ling,Aoran Zhang,Dexin Ma,Yuxin Shi,He Wen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-11 被引量:67
标识
DOI:10.1109/tim.2022.3154814
摘要

Deep learning has been widely used in recent years for printed circuit board (PCB) defect detection because of its excellent performance. However, deep-learning-based approaches often suffer from the over-fitting problem due to the lack of sufficient training data in real applications. Meanwhile, these approaches still have some challenges to detect these defects with small sizes and irregular shapes. To address these problems, this article has developed a novel deep Siamese semantic segmentation network which integrates the similarity measurement of the Siamese network with the encoder–decoder semantic segmentation network for PCB welding defect detection. This network includes two encoders sharing weighted values, a decoder, and some correlation modules, in which the decoder integrates deep features from two decoders with their feature difference computed by some correlation modules via skipping connections to recover spatial information on multiple output layers, and thus this proposed network can perform PCB welding small defect semantic segmentation. Moreover, via these correlation modules, this proposed network can pay more attention to semantic difference and further alleviate the over-fitting issue because of insufficient defect samples. Finally, we propose a combined loss function which combines the weighted cross-entropy loss, the Lovasz softmax loss, and the weighted precision–recall loss for network training to further improve small defect segmentation and recall improvement. Experimental results demonstrate that the proposed network can be trained on limited training images and achieve high efficiency and outstanding effects for PCB welding small defect segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qinjiehm完成签到,获得积分10
3秒前
爱吃西瓜完成签到,获得积分10
3秒前
3秒前
yolo完成签到,获得积分10
3秒前
子期完成签到 ,获得积分10
4秒前
mw发布了新的文献求助10
4秒前
jstagey完成签到,获得积分10
4秒前
FashionBoy应助somous采纳,获得10
4秒前
彩色枫发布了新的文献求助10
4秒前
蒹葭完成签到,获得积分10
7秒前
王青文完成签到,获得积分10
7秒前
LHS驳回了爆米花应助
8秒前
9秒前
10秒前
mw完成签到,获得积分10
12秒前
13秒前
xiaotianli完成签到,获得积分10
14秒前
15秒前
爱吃西瓜发布了新的文献求助10
16秒前
追寻的问玉完成签到 ,获得积分10
16秒前
光亮水蓝关注了科研通微信公众号
17秒前
17秒前
SHARK完成签到,获得积分20
19秒前
orixero应助fvsuar采纳,获得10
20秒前
禛禛发布了新的文献求助10
22秒前
最佳发布了新的文献求助20
22秒前
kusedayang发布了新的文献求助10
23秒前
24秒前
28秒前
禛禛完成签到,获得积分10
28秒前
Lucas应助不二家的卡农采纳,获得10
29秒前
gndd完成签到,获得积分10
29秒前
小杨发布了新的文献求助10
30秒前
30秒前
31秒前
夜月三星完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
31秒前
星辰大海应助虚心的海蓝采纳,获得10
31秒前
那只幸运的小肥羊完成签到,获得积分10
33秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742464
求助须知:如何正确求助?哪些是违规求助? 5408439
关于积分的说明 15345013
捐赠科研通 4883738
什么是DOI,文献DOI怎么找? 2625271
邀请新用户注册赠送积分活动 1574132
关于科研通互助平台的介绍 1531071