Choice-Based Airline Schedule Design and Fleet Assignment: A Decomposition Approach

计算机科学 地铁列车时刻表 分解 本德分解 运筹学 调度(生产过程) 水准点(测量) 网络规划与设计 利润(经济学) 航空 数学优化 工程类 经济 数学 生物 操作系统 大地测量学 航空航天工程 微观经济学 计算机网络 地理 生态学
作者
Chiwei Yan,Cynthia Barnhart,Vikrant Vaze
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
卷期号:56 (6): 1410-1431 被引量:11
标识
DOI:10.1287/trsc.2022.1141
摘要

We study an integrated airline schedule design and fleet assignment model for constructing schedules by simultaneously selecting from a pool of optional flights and assigning fleet types to these scheduled flights. This is a crucial tactical decision that greatly influences airline profits. As passenger demand is often substitutable among available fare products (defined as a combination of an itinerary and a fare class) between the same origin–destination pair, we present an optimization approach that includes a passenger choice model for fare product selections. To tackle the formidable computational challenge of solving this large-scale network design problem, we propose a decomposition approach based on partitioning the flight network into smaller subnetworks by exploiting weak dependencies in network structure. The decomposition relies on a series of approximation analyses and a novel fare split problem to allocate optimally the fares of products that are shared by flights in different subnetworks. We present several reformulations that represent fleet assignment and schedule decisions and formally characterize their relative strengths. This gives rise to a new reformulation that is able to trade off strength and size flexibly. We conduct detailed computational experiments using two realistically sized airline instances to demonstrate the effectiveness of our approach. Under a simulated passenger booking environment with both perfect and imperfect forecasts, we show that the fleeting and scheduling decisions informed by our approach deliver significant and robust profit improvement over all benchmark implementations and previous models in the literature.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
pluto应助体贴海白采纳,获得50
3秒前
领导范儿应助金籽采纳,获得10
4秒前
子曰言午发布了新的文献求助30
4秒前
肖智议发布了新的文献求助10
5秒前
5秒前
天南完成签到,获得积分10
8秒前
喵星人发布了新的文献求助10
9秒前
善学以致用应助雪白背包采纳,获得10
9秒前
无花果应助傻瓜子采纳,获得10
9秒前
bingbingnan完成签到,获得积分20
10秒前
JamesPei应助肖智议采纳,获得10
11秒前
标致不评发布了新的文献求助10
12秒前
12秒前
沉静的万天完成签到 ,获得积分10
13秒前
共享精神应助碳点godfather采纳,获得10
14秒前
李lailai完成签到 ,获得积分10
16秒前
不配.应助yulia采纳,获得20
17秒前
19秒前
木木夕完成签到,获得积分10
21秒前
will发布了新的文献求助200
21秒前
22秒前
科研通AI2S应助Euphon采纳,获得30
22秒前
They_say发布了新的文献求助10
23秒前
23秒前
健忘的金完成签到 ,获得积分10
24秒前
搜集达人应助受伤雁荷采纳,获得10
25秒前
GUMC发布了新的文献求助20
26秒前
笑点低战斗机完成签到,获得积分10
26秒前
pluto应助月蚀六花采纳,获得10
27秒前
Evelyn完成签到,获得积分10
27秒前
精气被实验吸干完成签到,获得积分10
28秒前
28秒前
Sarahminn发布了新的文献求助10
28秒前
29秒前
吉祥财子完成签到,获得积分10
29秒前
30秒前
30秒前
Gracezzz完成签到 ,获得积分10
32秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3329350
求助须知:如何正确求助?哪些是违规求助? 2959031
关于积分的说明 8594090
捐赠科研通 2637507
什么是DOI,文献DOI怎么找? 1443599
科研通“疑难数据库(出版商)”最低求助积分说明 668773
邀请新用户注册赠送积分活动 656176