作者
Ying Zhu,Qingce Zang,Zhigang Luo,Jiuming He,Ruiping Zhang,Zeper Abliz
摘要
Rapid and accurate metabolite annotation in mass spectrometry imaging (MSI) can improve the efficiency of spatially resolved metabolomics studies and accelerate the discovery of reliable in situ disease biomarkers. To date, metabolite annotation tools in MSI generally utilize isotopic patterns, but high-throughput fragmentation-based identification and biological and technical factors that influence structure elucidation are active challenges. Here, we proposed an organ-specific, metabolite-database-driven approach to facilitate efficient and accurate MSI metabolite annotation. Using data-dependent acquisition (DDA) in liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) to generate high-coverage product ions, we identified 1620 unique metabolites from eight mouse organs (brain, liver, kidney, heart, spleen, lung, muscle, and pancreas) and serum. Following the evaluation of the adduct form difference of metabolite ions between LC–MS and airflow-assisted desorption electrospray ionization (AFADESI)-MSI and deciphering organ-specific metabolites, we constructed a metabolite database for MSI consisting of 27,407 adduct ions. An automated annotation tool, MSIannotator, was then created to conduct metabolite annotation in the MSI dataset with high efficiency and confidence. We applied this approach to profile the spatially resolved landscape of the whole mouse body and discovered that metabolites were distributed across the body in an organ-specific manner, which even spanned different mouse strains. Furthermore, the spatial metabolic alteration in diabetic mice was delineated across different organs, exhibiting that differentially expressed metabolites were mainly located in the liver, brain, and kidney, and the alanine, aspartate, and glutamate metabolism pathway was simultaneously altered in these three organs. This approach not only enables robust metabolite annotation and visualization on a body-wide level but also provides a valuable database resource for underlying organ-specific metabolic mechanisms.