亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LMFFNet: A Well-Balanced Lightweight Network for Fast and Accurate Semantic Segmentation

计算机科学 分割 人工智能 模式识别(心理学) 块(置换群论) 推论 特征(语言学) 瓶颈 合并(版本控制) 保险丝(电气) 并行计算 嵌入式系统 几何学 哲学 工程类 电气工程 语言学 数学
作者
Min Shi,Jia-Lin Shen,Qingming Yi,Jian Weng,Zunkai Huang,Aiwen Luo,Yicong Zhou
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (6): 3205-3219 被引量:68
标识
DOI:10.1109/tnnls.2022.3176493
摘要

Real-time semantic segmentation is widely used in autonomous driving and robotics. Most previous networks achieved great accuracy based on a complicated model involving mass computing. The existing lightweight networks generally reduce the parameter sizes by sacrificing the segmentation accuracy. It is critical to balance the parameters and accuracy for real-time semantic segmentation. In this article, we propose a lightweight multiscale-feature-fusion network (LMFFNet) mainly composed of three types of components: split-extract-merge bottleneck (SEM-B) block, feature fusion module (FFM), and multiscale attention decoder (MAD), where the SEM-B block extracts sufficient features with fewer parameters. FFMs fuse multiscale semantic features to effectively improve the segmentation accuracy and the MAD well recovers the details of the input images through the attention mechanism. Without pretraining, LMFFNet-3-8 achieves 75.1% mean intersection over union (mIoU) with 1.4 M parameters at 118.9 frames/s using RTX 3090 GPU. More experiments are investigated extensively on various resolutions on other three datasets of CamVid, KITTI, and WildDash2. The experiments verify that the proposed LMFFNet model makes a decent tradeoff between segmentation accuracy and inference speed for real-time tasks. The source code is publicly available at https://github.com/Greak-1124/LMFFNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
严冰蝶完成签到 ,获得积分10
4秒前
cerium1925发布了新的文献求助10
7秒前
Santiago完成签到,获得积分10
20秒前
LMW应助cerium1925采纳,获得10
28秒前
1分钟前
1分钟前
东篱发布了新的文献求助10
1分钟前
馆长应助科研通管家采纳,获得10
1分钟前
科研通AI6应助东篱采纳,获得10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
烟花应助曾泰平采纳,获得10
3分钟前
3分钟前
3分钟前
起风了完成签到 ,获得积分10
3分钟前
曾泰平发布了新的文献求助10
3分钟前
Able完成签到,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
馆长应助科研通管家采纳,获得10
3分钟前
4分钟前
4分钟前
4分钟前
忧郁小鸽子完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
cadnash完成签到,获得积分10
5分钟前
5分钟前
善学以致用应助桃欣采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
馆长应助科研通管家采纳,获得10
5分钟前
6分钟前
iman完成签到,获得积分10
6分钟前
共享精神应助Dreamer.采纳,获得10
6分钟前
愉快的花卷完成签到,获得积分10
6分钟前
田様应助愉快的花卷采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595764
求助须知:如何正确求助?哪些是违规求助? 4008008
关于积分的说明 12408755
捐赠科研通 3686743
什么是DOI,文献DOI怎么找? 2032042
邀请新用户注册赠送积分活动 1065278
科研通“疑难数据库(出版商)”最低求助积分说明 950616