THPs: Topological Hawkes Processes for Learning Causal Structure on Event Sequences

卷积(计算机科学) 事件(粒子物理) 计算机科学 拓扑(电路) 图形 依赖关系(UML) 独立同分布随机变量 最大化 人工智能 理论计算机科学 算法 数学 随机变量 数学优化 组合数学 人工神经网络 统计 物理 量子力学
作者
Ruichu Cai,Siyu Wu,Jie Qiao,Zhifeng Hao,Keli Zhang,Xi Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (1): 479-493 被引量:7
标识
DOI:10.1109/tnnls.2022.3175622
摘要

Learning causal structure among event types on multitype event sequences is an important but challenging task. Existing methods, such as the Multivariate Hawkes processes, mostly assumed that each sequence is independent and identically distributed. However, in many real-world applications, it is commonplace to encounter a topological network behind the event sequences such that an event is excited or inhibited not only by its history but also by its topological neighbors. Consequently, the failure in describing the topological dependency among the event sequences leads to the error detection of the causal structure. By considering the Hawkes processes from the view of temporal convolution, we propose a topological Hawkes process (THP) to draw a connection between the graph convolution in the topology domain and the temporal convolution in time domains. We further propose a causal structure learning method on THP in a likelihood framework. The proposed method is featured with the graph convolution-based likelihood function of THP and a sparse optimization scheme with an Expectation-Maximization of the likelihood function. Theoretical analysis and experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助kookery采纳,获得10
1秒前
1秒前
外向的聪健完成签到,获得积分10
2秒前
2秒前
娜娜子欧发布了新的文献求助10
2秒前
顺利的伊完成签到,获得积分10
2秒前
3秒前
Hey完成签到 ,获得积分10
3秒前
Lucas应助Mayday采纳,获得10
4秒前
DaYongDan完成签到 ,获得积分10
4秒前
5秒前
可爱的女孩子完成签到,获得积分10
5秒前
呜呜完成签到,获得积分10
7秒前
唐雨文发布了新的文献求助10
8秒前
8秒前
9秒前
cmuzf完成签到,获得积分10
9秒前
funny完成签到,获得积分10
10秒前
smengxxx关注了科研通微信公众号
10秒前
win发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
mike完成签到,获得积分10
14秒前
羊羊完成签到 ,获得积分10
14秒前
16秒前
烟花应助小东采纳,获得10
17秒前
zhui发布了新的文献求助10
17秒前
木樱完成签到 ,获得积分10
18秒前
今后应助ww采纳,获得10
20秒前
20秒前
22秒前
西北孤傲的狼完成签到,获得积分10
22秒前
xu给xu的求助进行了留言
23秒前
23秒前
mia发布了新的文献求助30
24秒前
高贵的百褶裙完成签到,获得积分10
25秒前
zhui完成签到,获得积分10
26秒前
量子星尘发布了新的文献求助10
26秒前
wanci应助Natua采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956215
求助须知:如何正确求助?哪些是违规求助? 3502433
关于积分的说明 11107557
捐赠科研通 3233009
什么是DOI,文献DOI怎么找? 1787120
邀请新用户注册赠送积分活动 870498
科研通“疑难数据库(出版商)”最低求助积分说明 802032