材料科学
阳极
锡
插层(化学)
氮化钛
锂(药物)
电极
工作职能
化学工程
阴极
离子
扩散
无定形固体
扩散阻挡层
电子传输链
氮化物
电子
纳米技术
无机化学
物理化学
结晶学
有机化学
热力学
冶金
图层(电子)
化学
内分泌学
工程类
物理
生物
医学
量子力学
植物
作者
Siwei Zhao,Chenlong Dong,Xiaotong Wang,Yufeng Tang,Fuqiang Huang
标识
DOI:10.1002/adfm.202112074
摘要
Abstract Intercalation typed electrodes are expected with low theoretical capacity, which falls behind their high rate performance and stability. In this work, α‐TiNCl, an isoelectronic system of TiO 2 , is designed as a promising high‐capacity intercalation anode. TiNCl features are layered TiN backbone terminated by Cl atoms. While the rocksalt TiN backbones function as electron conductors, the interlayer voids provide Cl‐coordinated Li + sites without strong Li‐Ti repulsion, which proves to be a rapid diffusion path with a low energy barrier (0.06 vs 0.47 eV of TiO 2 ). Therefore, a dual‐functional TiNCl matrix is established for Li + and e – transport. To stabilize the layered structure, TiNCl is scaffolded by an in situ grown TiO 2 coating, which also serves as an electron reservoir during lithiation. The TiNCl‐TiO 2 anode exhibits significantly large Li + intercalation capacity (243% of TiO 2 ) and outstanding battery performance (231 mA h g –1 at ≈17 C for 2500 cycles, 94 mA h g –1 at ≈34 C for 10 000 cycles). The (+) LiCoO 2 || TiNCl‐TiO 2 (–) full battery maintains 170 mA h g –1 for 300 cycles. This work may shed light on the molecular engineering of new compounds for electrodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI