Identification of novel discoidin domain receptor 1 (DDR1) inhibitors using E-pharmacophore modeling, structure-based virtual screening, molecular dynamics simulation and MM-GBSA approaches

药效团 地址1 盘状结构域 基诺美 虚拟筛选 受体酪氨酸激酶 化学 药物发现 小分子 对接(动物) 计算生物学 激酶 生物 生物化学 医学 护理部
作者
Hossam Nada,Kyeong Lee,Lizaveta Gotina,Ae Nim Pae,Ahmed Elkamhawy
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:142: 105217-105217 被引量:52
标识
DOI:10.1016/j.compbiomed.2022.105217
摘要

Dysregulation of the discoidin domain receptor (DDR1), a collagen-activated receptor tyrosine kinase, has been linked to several human cancer diseases including non-small cell lung carcinoma (NSCLC), ovarian cancer, glioblastoma, and breast cancer, in addition to several inflammatory and neurological conditions. Although there are some selective DDR1 inhibitors that have been discovered during the last two decades, a combination of elevated cytotoxicity, kinome selectivity and/or poor DMPK profile has prevented more in-depth studies from being performed. As such, no DDR1 inhibitor has reached clinical investigation to date, forming an urgent need to develop specific DDR1 inhibitor(s) using various drug discovery means. However, the recent discovery of VU6015929, a potent and selective DDR1 kinase inhibitor, with enhanced physiochemical and DMPK properties in addition to its clean kinome profile marked a milestone in the development of DDR1 inhibitors. Herein, VU6015929 was used to construct a 3D e-pharmacophore model which was validated via calculating the difference of score between the active compounds and decoys. The validated e-pharmacophore model was then utilized to screen 20 million drug-like compounds obtained from the freely accessible Zinc database. The generated hits were ranked using high throughput virtual screening technique (HTVS), and the top 8 small molecules were subjected to a molecular docking study and MM-GBSA calculations. Protein-ligand complexes of compounds 1, 2, 3 and the standard compound (VU6015929) were performed for 100 ns and compared with the DDR1 unbound protein state and the DDR1 bound to a co-crystallized ligand. The molecular docking, MD and MM-GBSA outputs revealed compounds 1-3 as potential DDR1 inhibitors, with compound 2 displaying superior binding affinity, comparable binding stability and average binding free energy for the ligand-enzyme complex compared to VU6015929.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助1123采纳,获得10
刚刚
1秒前
1秒前
2秒前
3秒前
YuanLeiZhang完成签到,获得积分10
3秒前
Akim应助ysxl采纳,获得10
3秒前
3秒前
5秒前
今后应助包宇采纳,获得10
5秒前
5秒前
吟月归客完成签到,获得积分10
6秒前
ken发布了新的文献求助30
6秒前
澡雪发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
bkagyin应助000采纳,获得10
7秒前
Yuki发布了新的文献求助10
7秒前
在水一方应助体贴代容采纳,获得10
7秒前
8秒前
8秒前
asdfghjkl发布了新的文献求助10
8秒前
9秒前
积极妙菡发布了新的文献求助10
10秒前
莫123发布了新的文献求助10
11秒前
巴巴塔完成签到,获得积分10
11秒前
斯文败类应助糟糕的铁锤采纳,获得10
12秒前
欣慰阑悦发布了新的文献求助10
12秒前
宋浩奇发布了新的文献求助10
12秒前
12秒前
12秒前
杨文成发布了新的文献求助10
14秒前
无花果应助Wxj246801采纳,获得10
15秒前
刘旦生发布了新的文献求助80
15秒前
大模型应助大力的诗蕾采纳,获得10
15秒前
16秒前
16秒前
17秒前
hyf发布了新的文献求助10
17秒前
CodeCraft应助李志华采纳,获得10
17秒前
HMO_eee完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684634
求助须知:如何正确求助?哪些是违规求助? 5037948
关于积分的说明 15184748
捐赠科研通 4843860
什么是DOI,文献DOI怎么找? 2596968
邀请新用户注册赠送积分活动 1549572
关于科研通互助平台的介绍 1508077