本构方程
有限元法
冯·米塞斯屈服准则
可塑性
有限应变理论
非线性系统
柯西应力张量
数学
平面应力
无穷小应变理论
应用数学
计算机科学
牙石(牙科)
数学分析
物理
结构工程
工程类
热力学
医学
牙科
量子力学
作者
E. A. de Souza Neto,D. Perić,D. R. J. Owen
出处
期刊:Wiley eBooks
[Wiley]
日期:2008-01-01
被引量:1135
摘要
Part One Basic concepts 1 Introduction 1.1 Aims and scope 1.2 Layout 1.3 General scheme of notation 2 ELEMENTS OF TENSOR ANALYSIS 2.1 Vectors 2.2 Second-order tensors 2.3 Higher-order tensors 2.4 Isotropic tensors 2.5 Differentiation 2.6 Linearisation of nonlinear problems 3 THERMODYNAMICS 3.1 Kinematics of deformation 3.2 Infinitesimal deformations 3.3 Forces. Stress Measures 3.4 Fundamental laws of thermodynamics 3.5 Constitutive theory 3.6 Weak equilibrium. The principle of virtual work 3.7 The quasi-static initial boundary value problem 4 The finite element method in quasi-static nonlinear solid mechanics 4.1 Displacement-based finite elements 4.2 Path-dependent materials. The incremental finite element procedure 4.3 Large strain formulation 4.4 Unstable equilibrium. The arc-length method 5 Overview of the program structure 5.1 Introduction 5.2 The main program 5.3 Data input and initialisation 5.4 The load incrementation loop. Overview 5.5 Material and element modularity 5.6 Elements. Implementation and management 5.7 Material models: implementation and management Part Two Small strains 6 The mathematical theory of plasticity 6.1 Phenomenological aspects 6.2 One-dimensional constitutive model 6.3 General elastoplastic constitutive model 6.4 Classical yield criteria 6.5 Plastic flow rules 6.6 Hardening laws 7 Finite elements in small-strain plasticity problems 7.1 Preliminary implementation aspects 7.2 General numerical integration algorithm for elastoplastic constitutive equations 7.3 Application: integration algorithm for the isotropically hardening von Mises model 7.4 The consistent tangent modulus 7.5 Numerical examples with the von Mises model 7.6 Further application: the von Mises model with nonlinear mixed hardening 8 Computations with other basic plasticity models 8.1 The Tresca model 8.2 The Mohr-Coulomb model 8.3 The Drucker-Prager model 8.4 Examples 9 Plane stress plasticity 9.1 The basic plane stress plasticity problem 9.2 Plane stress constraint at the Gauss point level 9.3 Plane stress constraint at the structural level 9.4 Plane stress-projected plasticity models 9.5 Numerical examples 9.6 Other stress-constrained states 10 Advanced plasticity models 10.1 A modified Cam-Clay model for soils 10.2 A capped Drucker-Prager model for geomaterials 10.3 Anisotropic plasticity: the Hill, Hoffman and Barlat-Lian models 11 Viscoplasticity 11.1 Viscoplasticity: phenomenological aspects 11.2 One-dimensional viscoplasticity model 11.3 A von Mises-based multidimensional model 11.4 General viscoplastic constitutive model 11.5 General numerical framework 11.6 Application: computational implementation of a von Mises-based model 11.7 Examples 12 Damage mechanics 12.1 Physical aspects of internal damage in solids 12.2 Continuum damage mechanics 12.3 Lemaitre's elastoplastic damage theory 12.4 A simplified version of Lemaitre's model 12.5 Gurson's void growth model 12.6 Further issues in damage modelling Part Three Large strains 13 Finite strain hyperelasticity 13.1 Hyperelasticity: basic concepts 13.2 Some particular models 13.3 Isotropic finite hyperelasticity in plane stress 13.4 Tangent moduli: the elasticity tensors 13.5 Application: Ogden material implementation 13.6 Numerical examples 13.7 Hyperelasticity with damage: the Mullins effect 14 Finite strain elastoplasticity 14.1 Finite strain elastoplasticity: a brief review 14.2 One-dimensional finite plasticity model 14.3 General hyperelastic-based multiplicative plasticity model 14.4 The general elastic predictor/return-mapping algorithm 14.5 The consistent spatial tangent modulus 14.6 Principal stress space-based implementation 14.7 Finite plasticity in plane stress 14.8 Finite viscoplasticity 14.9 Examples 14.10 Rate forms: hypoelastic-based plasticity models 14.11 Finite plasticity with kinematic hardening 15 Finite elements for large-strain incompressibility 15.1 The F-bar methodology 15.2 Enhanced assumed strain methods 15.3 Mixed u/p formulations 16 Anisotropic finite plasticity: Single crystals 16.1 Physical aspects 16.2 Plastic slip and the Schmid resolved shear stress 16.3 Single crystal simulation: a brief review 16.4 A general continuum model of single crystals 16.5 A general integration algorithm 16.6 An algorithm for a planar double-slip model 16.7 The consistent spatial tangent modulus 16.8 Numerical examples 16.9 Viscoplastic single crystals Appendices A Isotropic functions of a symmetric tensor A.1 Isotropic scalar-valued functions A.1.1 Representation A.1.2 The derivative of anisotropic scalar function A.2 Isotropic tensor-valued functions A.2.1 Representation A.2.2 The derivative of anisotropic tensor function A.3 The two-dimensional case A.3.1 Tensor function derivative A.3.2 Plane strain and axisymmetric problems A.4 The three-dimensional case A.4.1 Function computation A.4.2 Computation of the function derivative A.5 A particular class of isotropic tensor functions A.5.1 Two dimensions A.5.2 Three dimensions A.6 Alternative procedures B The tensor exponential B.1 The tensor exponential function B.1.1 Some properties of the tensor exponential function B.1.2 Computation of the tensor exponential function B.2 The tensor exponential derivative B.2.1 Computer implementation B.3 Exponential map integrators B.3.1 The generalised exponential map midpoint rule C Linearisation of the virtual work C.1 Infinitesimal deformations C.2 Finite strains and deformations C.2.1 Material description C.2.2 Spatial description D Array notation for computations with tensors D.1 Second-order tensors D.2 Fourth-order tensors D.2.1 Operations with non-symmetric tensors References Index
科研通智能强力驱动
Strongly Powered by AbleSci AI