胆固醇7α羟化酶
新陈代谢
法尼甾体X受体
肠道菌群
脂质代谢
脱氧胆酸
胆汁酸
生物化学
G蛋白偶联胆汁酸受体
化学
熊去氧胆酸
FGF19型
胆酸
CYP8B1
胆酸
生物
核受体
受体
基因
转录因子
成纤维细胞生长因子
作者
Wei Xu,Yingying Kong,Tuo Zhang,Zhihua Gong,Wenjun Xiao
摘要
l-Theanine (LTA) is a biologically active ingredient in tea that shows great potential for regulating lipid metabolism. Bile acids (BA), an important end-product of cholesterol catabolism, participate in the regulation of lipid metabolism and gut microbiota. Here, we investigated the effect of LTA on lipid metabolism and the mechanism by which it regulates BA metabolism and gut microbiota. Male BALB/c mice were treated with LTA for 28 days.Daily LTA doses of 100 and 300 mg kg-1 d-1 altered the gut microbiota in mice, predominantly by decreasing Lactobacillus, Streptococcus, Bacteroides, Clostridium and Enterorhabdus microbes associated with bile-salt hydrolase (BSH) activity, thereby decreasing the activity of BSH and increasing the levels of ileum conjugated BA (such as glycocholic acid (GCA) and lithocholic acid), thereby inhibiting the intestinal farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) signaling pathway. Inhibition of FXR-FGF15 signaling was accompanied by upregulation of cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein expression and increased hepatic production of cholic acid, deoxycholic acid, GCA, glycine cholic acid and glycine ursodeoxycholic acid. Meanwhile, increasing hepatic unconjugated BA upregulated the mRNA and protein expression of liver 3-hydroxy-3-methylglutaryl-CoA reductase and downregulated the mRNA and protein expression of stearoyl-CoA desaturase-1, liver low-density lipoprotein receptor and type B scavenger receptor. Therefore, the serum levels of cholesterol and triglycerides decreased.Our findings indicate that LTA regulates lipid metabolism by modulating the gut microbiota and BA metabolism via the FXR-FGF15-CYP7A1 pathway. © 2022 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI