Deriving seawater quality criteria of tris(2-chloroethyl) phosphate for ecological risk assessment in China seas through species sensitivity distributions
Tris(2-chloroethyl) phosphate (TCEP), one of the widely used organophosphorus flame retardants (OPFRs), has been frequently detected in the marine environment in the seas off China. The existing freshwater biotoxicity data are not suited to derivation of the seawater quality criteria of TCEP and evaluating the associated ecological risks. This study aimed at deriving water quality criteria (WQC) of TCEP for marine organisms based on species sensitivity distribution (SSD) approach using the acute toxicity data generated from multispecies bioassays and chronic toxicity data by converting acute data with the acute-to-chronic ratios (ACRs); the derived WQC were then used to evaluate the ecological risk for TCEP in China Seas. According to median effective concentration (EC50) and median lethal concentration (LC50), TCEP had a moderate or low toxicity to eight marine species selected, among which mysid Neomysis awatschensis (96h-LC50 of 39.65 mg/L) and green alga Platymonas subcordiformis (96-h EC50 of 395.42 mg/L) were the most sensitive and the most tolerant, respectively. The acute and chronic hazardous concentrations of TCEP for 5% of marine species (HC5) were estimated to be 29.55 and 2.68 mg/L, respectively. The short-term and long-term WQC were derived to be 9.85 and 0.89 mg/L, respectively. The risk quotient (RQ) values indicated that TECP at current levels poses a negligible risk to marine ecosystems in China. These results will provide valuable reference for the government to establish a seawater quality standard for TCEP.