Multilinear subspace learning for Person Re-Identification based fusion of high order tensor features

计算机科学 人工智能 张量(固有定义) 模式识别(心理学) 多线性映射 子空间拓扑 卷积神经网络 匹配(统计) 机器学习 数学 统计 纯数学
作者
Ammar Chouchane,Mohcene Bessaoudi,Hamza Kheddar,Abdelmalik Ouamane,Tiago Vieira,M. Hassaballah
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107521-107521
标识
DOI:10.1016/j.engappai.2023.107521
摘要

Video surveillance image analysis and processing is an important field in computer vision and among the challenging tasks for Person Re-Identification (PRe-ID). The latter aims at finding a target person who has already been identified and appeared on a camera network using a powerful description of their pedestrian images. The success of recent research on person PRe-ID is largely backed into the effective features extraction and representation with a powerful learning of these features to correctly discriminate pedestrian images. To this end, two powerful features, Convolutional Neural Network (CNN) and Local Maximal Occurrence (LOMO) are modeled on a multidimensional data in the proposed method, High-Dimensional Feature Fusion (HDFF). Specifically, a new tensor fusion scheme is introduced to take advantage and combine two types of features in the same tensor data even if its dimensions are not the same. To improve the accuracy, we use Tensor Cross-View Quadratic Analysis (TXQDA) to perform multilinear subspace learning followed by the Cosine similarity for matching. TXQDA efficiently ensures the learning ability and reduces the high dimensionality resulting from high-order tensor data. The effectiveness of the proposed method is verified through experiments on three challenging widely-used PRe-ID datasets namely, VIPeR, GRID, and PRID450S. Extensive experiments show that the proposed method performs very well when compared with recent state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Yellue采纳,获得10
1秒前
1秒前
1秒前
1秒前
jiasen完成签到,获得积分10
2秒前
xujie发布了新的文献求助10
2秒前
细心雨兰完成签到 ,获得积分20
3秒前
汉堡包应助你的文献采纳,获得10
4秒前
4秒前
guo完成签到,获得积分10
5秒前
6秒前
wangyaqiong应助lk65734采纳,获得10
6秒前
安安完成签到,获得积分10
6秒前
打工人章鱼哥完成签到 ,获得积分10
7秒前
pp完成签到,获得积分10
7秒前
Jeux完成签到,获得积分10
7秒前
张强发布了新的文献求助10
8秒前
9秒前
彭于晏应助老实的滑板采纳,获得10
10秒前
11秒前
11秒前
花小胖发布了新的文献求助10
12秒前
NexusExplorer应助ding采纳,获得10
13秒前
13秒前
情怀应助xdlongchem采纳,获得10
14秒前
湛刘佳发布了新的文献求助10
14秒前
bkagyin应助人机采纳,获得10
14秒前
冰芯BINGXIN完成签到,获得积分10
14秒前
15秒前
lee完成签到,获得积分10
16秒前
16秒前
17秒前
今后应助OHDJSZMS采纳,获得10
17秒前
狠毒的小龙虾完成签到,获得积分10
18秒前
桐桐应助xujie采纳,获得10
18秒前
且陶陶发布了新的文献求助10
18秒前
18秒前
冰芯BINGXIN发布了新的文献求助10
19秒前
123完成签到,获得积分10
19秒前
hhhblabla应助果车采纳,获得20
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3515077
求助须知:如何正确求助?哪些是违规求助? 3097476
关于积分的说明 9235512
捐赠科研通 2792384
什么是DOI,文献DOI怎么找? 1532451
邀请新用户注册赠送积分活动 712103
科研通“疑难数据库(出版商)”最低求助积分说明 707107