烟气脱硫
吸附
多孔性
选择性
密度泛函理论
材料科学
分子
化学工程
金属有机骨架
选择性吸附
制作
纳米技术
化学
有机化学
计算化学
催化作用
复合材料
病理
工程类
医学
替代医学
作者
Wenli Xu,Liangjun Li,Mengwei Guo,Fuzhao Zhang,Pengcheng Dai,Xin Gu,Dandan Liu,Tao Liu,Kuitong Zhang,Tao Xing,Muzhou Wang,Zhi Li,Mingbo Wu
标识
DOI:10.1002/anie.202312029
摘要
Flue gas desulfurization is crucial for both human health and ecological environments. However, developing efficient SO2 adsorbents that can break the trade-off between adsorption capacity and selectivity is still challenging. In this work, a new type of fluorinated anion-pillared metal-organic frameworks (APMOFs) with a pillar-cage structure is fabricated through pillar-embedding into a highly porous and robust framework. This type of APMOFs comprises smaller tetrahedral cages and larger icosahedral cages interconnected by embedded [NbOF5 ]2- and [TaOF5 ]2- anions acting as pillars. The APMOFs exhibits high porosity and density of fluorinated anions, ensuring exceptional SO2 adsorption capacity and ultrahigh selectivity for SO2 /CO2 and SO2 /N2 gas mixtures. Furthermore, these two structures demonstrate excellent stability towards water, acid/alkali, and SO2 adsorption. Cycle dynamic breakthrough experiments confirm the excellent separation performance of SO2 /CO2 gas mixtures and their cyclic stability. SO2 -loaded single-crystal X-ray diffraction, Grand canonical Monte Carlo (GCMC) simulations combined with density functional theory (DFT) calculations reveal the preferred adsorption domains for SO2 molecules. The multiple-site host-guest and guest-guest interactions facilitate selective recognition and dense packing of SO2 in this hybrid porous material. This work will be instructive for designing porous materials for flue gas desulfurization and other gas-purification processes.
科研通智能强力驱动
Strongly Powered by AbleSci AI