已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

MAS-Net:Multi-modal Assistant Segmentation Network For Lumbar Intervertebral Disc

计算机科学 分割 联营 情态动词 人工智能 过程(计算) 特征(语言学) 椎间盘 计算机视觉 医学 放射科 高分子化学 语言学 化学 哲学 操作系统
作者
Qian Du,Yejun He,Wei Bu,Yukun Du,Huan Yang,Yongming Xi
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:68 (17): 175044-175044
标识
DOI:10.1088/1361-6560/acef9f
摘要

Abstract Objective. Despite advancements in medical imaging technology, the diagnosis and positioning of lumbar disc diseases still heavily rely on the expertise and experience of medical professionals. This process is often time-consuming, labor-intensive, and susceptible to subjective factors. Achieving automatic positioning and segmentation of lumbar intervertebral disc (LID) is the first and critical step in intelligent diagnosis of lumbar disc diseases. However, due to the complexity of the vertebral body and the ambiguity of the soft tissue boundaries of the LID, accurate and intelligent segmentation of LIDs remains challenging. The study aims to accurately and intelligently segment and locate LIDs by fully utilizing multi-modal lumbar magnetic resonance Images (MRIs). Approach. A novel multi-modal assistant segmentation network (MAS-Net) is proposed in this paper. The architecture consists of four key components: the multi-branch fusion encoder (MBFE), the cross-modality correlation evaluation (CMCE), the channel fusion transformer (CFT), and the selective Kernel (SK) based decoder. The MBFE module captures and integrates various modal features, while the CMCE module facilitates the fusion process between the MBFE and decoder. The CFT module selectively guides the flow of information between the MBFE and decoder and effectively utilizes skip connections from multiple layers. The SK module computes the significance of each channel using global pooling operations and applies weights to the input feature maps to improve the models recognition of important features. Main results. The proposed MAS-Net achieved a dice coefficient of 93.08% on IVD3Seg and 93.22% on DualModalDisc dataset, outperforming the current state-of-the-art network, accurately segmenting the LIDs, and generating a 3D model that can precisely display the LIDs. Significance. MAS-Net automates the diagnostics process and addresses challenges faced by doctors. Simplifying and enhancing the clarity of visual representation, multi-modal MRI allows for better information complementation and LIDs segmentation. By successfully integrating data from various modalities, the accuracy of LID segmentation is improved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mary发布了新的文献求助20
2秒前
Leah发布了新的文献求助10
3秒前
Eric发布了新的文献求助10
3秒前
放眼天下完成签到 ,获得积分10
5秒前
慕青应助尤寄风采纳,获得10
5秒前
小蘑菇应助小水蜜桃采纳,获得10
6秒前
6秒前
feng发布了新的文献求助10
8秒前
11秒前
hhhh完成签到,获得积分10
11秒前
hahaha完成签到,获得积分10
15秒前
hc完成签到,获得积分10
19秒前
小水蜜桃完成签到 ,获得积分10
21秒前
23秒前
科研通AI2S应助夏侯嘉采纳,获得10
24秒前
ZLY完成签到 ,获得积分10
25秒前
26秒前
asdfj应助miqiqi采纳,获得10
26秒前
buzhinianjiu完成签到 ,获得积分10
28秒前
李健应助可别熬夜了采纳,获得10
31秒前
悦耳的惜海完成签到,获得积分20
33秒前
36秒前
xiaxue完成签到 ,获得积分10
36秒前
38秒前
38秒前
Dr.完成签到 ,获得积分10
41秒前
lzc发布了新的文献求助10
41秒前
ET发布了新的文献求助10
43秒前
科研通AI2S应助ventus采纳,获得10
44秒前
syr发布了新的文献求助10
44秒前
HHHSean发布了新的文献求助10
51秒前
52秒前
积极的香菇完成签到 ,获得积分10
52秒前
53秒前
烟花应助Rita采纳,获得10
54秒前
SiO2完成签到 ,获得积分10
54秒前
如意白猫完成签到,获得积分10
56秒前
michaelxia完成签到,获得积分10
57秒前
优质演绎了我的青春完成签到 ,获得积分10
58秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171316
求助须知:如何正确求助?哪些是违规求助? 2822235
关于积分的说明 7938538
捐赠科研通 2482767
什么是DOI,文献DOI怎么找? 1322762
科研通“疑难数据库(出版商)”最低求助积分说明 633722
版权声明 602627