Lighter and faster: A multi-scale adaptive graph convolutional network for skeleton-based action recognition

计算机科学 骨架(计算机编程) 动作识别 图形 人工智能 比例(比率) 动作(物理) 模式识别(心理学) 卷积神经网络 理论计算机科学 量子力学 物理 程序设计语言 班级(哲学)
作者
Yuanjian Jiang,Hongmin Deng
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:132: 107957-107957
标识
DOI:10.1016/j.engappai.2024.107957
摘要

In recent years, graph convolutional network (GCN) has gained significant popularity in skeleton-based action recognition due to its ability to effectively model non-Euclidean data. However, most existing high-accuracy GCN-based models often utilize deep neural networks with numerous layers, resulting in increased computational costs. To address this issue, we propose a lightweight-modified multi-scale adaptive graph convolutional network (LMA-GCN) for skeleton-based action recognition, which can efficiently capture relationships between distant joints in the human skeleton and consider the uniqueness of different data samples as well while maintaining high inference speed and low complexity. In addition, a novel lightweight metric λlw is presented for effective evaluation of the model’s comprehensive performance between accuracy and lightweight. A simplified skeleton sequence representation is also presented for skeleton-based action recognition. Extensive experiments demonstrate the excellent comprehensive performance of the model LMA-GCN on three large public datasets: NTU RGB+D 60, NTU RGB+D 120, and UAV-Human. LMA-GCN obtains comparable accuracy with only 0.13M parameters and its inference speed reaches 80.2 sequences/second on one RTX 3060 GPU, which provides a simple, effective and feasible method for meeting the needs of “connected for anything, anywhere, anytime” and portable devices in internet of things (IoT) technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助hqq2312采纳,获得10
刚刚
刚刚
1秒前
Liz发布了新的文献求助10
1秒前
yls完成签到,获得积分10
1秒前
hero发布了新的文献求助20
1秒前
2秒前
2秒前
3秒前
葭月十七发布了新的文献求助10
4秒前
NexusExplorer应助踏实的沛容采纳,获得10
4秒前
小炮弹完成签到,获得积分20
4秒前
4秒前
ashram完成签到,获得积分10
4秒前
ma完成签到,获得积分10
5秒前
陈住气完成签到,获得积分10
5秒前
英姑应助nimoo采纳,获得10
5秒前
5秒前
Joker完成签到,获得积分20
6秒前
长欢发布了新的文献求助10
6秒前
7秒前
kkk发布了新的文献求助10
7秒前
专注的芷蕾完成签到,获得积分10
7秒前
李沐唅发布了新的文献求助10
7秒前
寻道图强应助科研通管家采纳,获得30
7秒前
敏敏发布了新的文献求助10
7秒前
英姑应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
盒子应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
打打应助one采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
思源应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
10秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135677
求助须知:如何正确求助?哪些是违规求助? 2786507
关于积分的说明 7777976
捐赠科研通 2442633
什么是DOI,文献DOI怎么找? 1298612
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600847