Joint Classification of Hyperspectral and LiDAR Data Using Height Information Guided Hierarchical Fusion-and-Separation Network

激光雷达 计算机科学 人工智能 高光谱成像 模式识别(心理学) 特征(语言学) 卷积神经网络 模态(人机交互) 遥感 哲学 地质学 语言学
作者
Tiecheng Song,Zheng Zeng,Chenqiang Gao,Haonan Chen,Jun Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:5
标识
DOI:10.1109/tgrs.2024.3353775
摘要

Hyperspectral image (HSI) and LiDAR data are complementary to each other, which can be combined to improve the classification performance. However, existing deep network models do not sufficiently consider their complementarity to design the network structure and loss functions. Moreover, there lacks a hierarchical mutual-assistance learning mechanism that leverages the modality-shared features to enhance the modality-specific ones and vice versa. In view of these, we propose a novel height information guided hierarchical fusion-and-separation network (HFSNet) for joint classification of HSI and LiDAR data. HFSNet consists of three major components, i.e., dual-structure feature encoders (DSFEs), feature fusion-and-separation blocks (F2SBs), and an edge decoder (ED). Specifically, the transformer and convolutional neural network are introduced in DSFEs to encode the spectral and spatial information of HSI and LiDAR data, respectively. In F2SBs, the deformable convolution-based height information guided fusion module and the modality separation refinement module are proposed to sequentially extract modality-shared and modality-specific features. Additionally, the ED is incorporated into our model to predict the LiDAR edge map from the HSI feature to improve the model's generalization ability. As such, the learned features from HSI and LiDAR data are deeply fused and mutually enhanced. Experiments on three benchmark datasets show the superiority of HFSNet to the state-of-the-art methods for jointly classifying HSI and LiDAR data with limited training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
从容的子轩完成签到,获得积分10
1秒前
科研通AI2S应助qs采纳,获得10
2秒前
2秒前
Zxxxxx发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
俊逸幻柏发布了新的文献求助10
4秒前
十三完成签到,获得积分10
4秒前
金发大猪脚完成签到,获得积分20
4秒前
4秒前
阿榆关注了科研通微信公众号
5秒前
颖中竹子发布了新的文献求助10
5秒前
脑洞疼应助冷傲可仁采纳,获得10
6秒前
Xin完成签到,获得积分10
6秒前
哒哒完成签到,获得积分10
7秒前
study发布了新的文献求助10
7秒前
可爱的函函应助AlleynY采纳,获得10
7秒前
Yelgna完成签到,获得积分20
8秒前
努力发1区发布了新的文献求助10
8秒前
8秒前
嘟嘟许完成签到,获得积分10
8秒前
李健应助Shine采纳,获得10
9秒前
sukiyaki完成签到,获得积分10
9秒前
lixiao发布了新的文献求助50
10秒前
烂漫代曼完成签到 ,获得积分10
10秒前
爆米花应助sususuper采纳,获得10
10秒前
海清完成签到 ,获得积分10
10秒前
无花果应助糊涂的大象采纳,获得10
10秒前
成金陈发布了新的文献求助10
11秒前
11秒前
frank发布了新的文献求助10
11秒前
寒冷鹏煊完成签到,获得积分10
12秒前
村北头小可爱完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
14秒前
专注代秋完成签到 ,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309103
求助须知:如何正确求助?哪些是违规求助? 2942468
关于积分的说明 8508989
捐赠科研通 2617498
什么是DOI,文献DOI怎么找? 1430174
科研通“疑难数据库(出版商)”最低求助积分说明 664072
邀请新用户注册赠送积分活动 649239