Joint Classification of Hyperspectral and LiDAR Data Using Height Information Guided Hierarchical Fusion-and-Separation Network

激光雷达 计算机科学 人工智能 高光谱成像 模式识别(心理学) 特征(语言学) 卷积神经网络 模态(人机交互) 遥感 语言学 地质学 哲学
作者
Tiecheng Song,Zheng Zeng,Chenqiang Gao,Haonan Chen,Jun Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:37
标识
DOI:10.1109/tgrs.2024.3353775
摘要

Hyperspectral image (HSI) and LiDAR data are complementary to each other, which can be combined to improve the classification performance. However, existing deep network models do not sufficiently consider their complementarity to design the network structure and loss functions. Moreover, there lacks a hierarchical mutual-assistance learning mechanism that leverages the modality-shared features to enhance the modality-specific ones and vice versa. In view of these, we propose a novel height information guided hierarchical fusion-and-separation network (HFSNet) for joint classification of HSI and LiDAR data. HFSNet consists of three major components, i.e., dual-structure feature encoders (DSFEs), feature fusion-and-separation blocks (F2SBs), and an edge decoder (ED). Specifically, the transformer and convolutional neural network are introduced in DSFEs to encode the spectral and spatial information of HSI and LiDAR data, respectively. In F2SBs, the deformable convolution-based height information guided fusion module and the modality separation refinement module are proposed to sequentially extract modality-shared and modality-specific features. Additionally, the ED is incorporated into our model to predict the LiDAR edge map from the HSI feature to improve the model's generalization ability. As such, the learned features from HSI and LiDAR data are deeply fused and mutually enhanced. Experiments on three benchmark datasets show the superiority of HFSNet to the state-of-the-art methods for jointly classifying HSI and LiDAR data with limited training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助摆烂蛋挞采纳,获得10
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
领投的虎完成签到,获得积分10
3秒前
3秒前
子木关注了科研通微信公众号
4秒前
量子星尘发布了新的文献求助10
4秒前
ning发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助30
5秒前
5秒前
5秒前
FashionBoy应助xiaoyaoyou351采纳,获得10
5秒前
5秒前
善学以致用应助无限麦片采纳,获得10
6秒前
哦啦啦发布了新的文献求助10
6秒前
乌苏苏发布了新的文献求助10
7秒前
三台完成签到,获得积分10
7秒前
7秒前
彭于晏发布了新的文献求助10
8秒前
lizhiqian2024发布了新的文献求助10
8秒前
LinX应助佳人琦许采纳,获得10
8秒前
今后应助花灯王子采纳,获得10
9秒前
9秒前
drchen完成签到 ,获得积分10
9秒前
9秒前
9秒前
完美世界应助lxx采纳,获得10
10秒前
xz发布了新的文献求助10
10秒前
yuxinyue发布了新的文献求助10
11秒前
11秒前
小芳芳完成签到,获得积分10
11秒前
litianyuan发布了新的文献求助10
12秒前
13秒前
yu驳回了Akim应助
13秒前
14秒前
赘婿应助刘珍荣采纳,获得10
14秒前
思源应助枫泾采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759707
求助须知:如何正确求助?哪些是违规求助? 5521712
关于积分的说明 15395175
捐赠科研通 4896734
什么是DOI,文献DOI怎么找? 2633863
邀请新用户注册赠送积分活动 1581925
关于科研通互助平台的介绍 1537410