Joint Classification of Hyperspectral and LiDAR Data Using Height Information Guided Hierarchical Fusion-and-Separation Network

激光雷达 计算机科学 人工智能 高光谱成像 模式识别(心理学) 特征(语言学) 卷积神经网络 模态(人机交互) 遥感 哲学 地质学 语言学
作者
Tiecheng Song,Zheng Zeng,Chenqiang Gao,Haonan Chen,Jun Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:37
标识
DOI:10.1109/tgrs.2024.3353775
摘要

Hyperspectral image (HSI) and LiDAR data are complementary to each other, which can be combined to improve the classification performance. However, existing deep network models do not sufficiently consider their complementarity to design the network structure and loss functions. Moreover, there lacks a hierarchical mutual-assistance learning mechanism that leverages the modality-shared features to enhance the modality-specific ones and vice versa. In view of these, we propose a novel height information guided hierarchical fusion-and-separation network (HFSNet) for joint classification of HSI and LiDAR data. HFSNet consists of three major components, i.e., dual-structure feature encoders (DSFEs), feature fusion-and-separation blocks (F2SBs), and an edge decoder (ED). Specifically, the transformer and convolutional neural network are introduced in DSFEs to encode the spectral and spatial information of HSI and LiDAR data, respectively. In F2SBs, the deformable convolution-based height information guided fusion module and the modality separation refinement module are proposed to sequentially extract modality-shared and modality-specific features. Additionally, the ED is incorporated into our model to predict the LiDAR edge map from the HSI feature to improve the model's generalization ability. As such, the learned features from HSI and LiDAR data are deeply fused and mutually enhanced. Experiments on three benchmark datasets show the superiority of HFSNet to the state-of-the-art methods for jointly classifying HSI and LiDAR data with limited training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘辞忧完成签到 ,获得积分10
刚刚
SATone完成签到,获得积分10
1秒前
1秒前
呼呼完成签到,获得积分10
1秒前
1秒前
Coarrb完成签到,获得积分10
1秒前
ylf发布了新的文献求助10
2秒前
胡小溪完成签到,获得积分10
2秒前
温暖的冬天完成签到,获得积分10
2秒前
从容雅柏完成签到,获得积分10
2秒前
JamesPei应助Lihuining采纳,获得10
2秒前
zy关注了科研通微信公众号
2秒前
大盘菜应助灯座采纳,获得10
3秒前
毅可爱完成签到,获得积分10
3秒前
充电宝应助灯座采纳,获得10
3秒前
无颜猪发布了新的文献求助10
3秒前
桐桐应助guochenggong采纳,获得10
4秒前
时冬冬应助虚心的静枫采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
怡然花卷完成签到,获得积分20
5秒前
老lili完成签到,获得积分10
5秒前
笑笑丶不爱笑完成签到,获得积分10
6秒前
6秒前
大本完成签到,获得积分10
7秒前
ylf完成签到,获得积分10
7秒前
7秒前
Oil完成签到,获得积分10
7秒前
7秒前
张姣姣完成签到,获得积分10
8秒前
xiyueQAQ完成签到,获得积分10
8秒前
9秒前
9秒前
英勇冬瓜完成签到,获得积分10
9秒前
9秒前
9秒前
打打应助DrLin采纳,获得10
9秒前
怡然花卷发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017