Joint Classification of Hyperspectral and LiDAR Data Using Height Information Guided Hierarchical Fusion-and-Separation Network

激光雷达 计算机科学 人工智能 高光谱成像 模式识别(心理学) 特征(语言学) 卷积神经网络 模态(人机交互) 遥感 哲学 地质学 语言学
作者
Tiecheng Song,Zheng Zeng,Chenqiang Gao,Haonan Chen,Jun Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:10
标识
DOI:10.1109/tgrs.2024.3353775
摘要

Hyperspectral image (HSI) and LiDAR data are complementary to each other, which can be combined to improve the classification performance. However, existing deep network models do not sufficiently consider their complementarity to design the network structure and loss functions. Moreover, there lacks a hierarchical mutual-assistance learning mechanism that leverages the modality-shared features to enhance the modality-specific ones and vice versa. In view of these, we propose a novel height information guided hierarchical fusion-and-separation network (HFSNet) for joint classification of HSI and LiDAR data. HFSNet consists of three major components, i.e., dual-structure feature encoders (DSFEs), feature fusion-and-separation blocks (F2SBs), and an edge decoder (ED). Specifically, the transformer and convolutional neural network are introduced in DSFEs to encode the spectral and spatial information of HSI and LiDAR data, respectively. In F2SBs, the deformable convolution-based height information guided fusion module and the modality separation refinement module are proposed to sequentially extract modality-shared and modality-specific features. Additionally, the ED is incorporated into our model to predict the LiDAR edge map from the HSI feature to improve the model's generalization ability. As such, the learned features from HSI and LiDAR data are deeply fused and mutually enhanced. Experiments on three benchmark datasets show the superiority of HFSNet to the state-of-the-art methods for jointly classifying HSI and LiDAR data with limited training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助lll采纳,获得10
2秒前
leaolf应助缥缈采纳,获得10
2秒前
2秒前
科研通AI6应助李2003采纳,获得10
2秒前
3秒前
深情安青应助Pierson采纳,获得10
3秒前
3秒前
mmmxxxjjj发布了新的文献求助10
4秒前
孙奕完成签到,获得积分20
5秒前
5秒前
阳光水壶完成签到,获得积分10
5秒前
搜集达人应助细心安容采纳,获得10
6秒前
852应助秋作采纳,获得10
6秒前
7秒前
学术五车发布了新的文献求助10
7秒前
初淇发布了新的文献求助10
8秒前
Feng发布了新的文献求助30
8秒前
10秒前
10秒前
xiaoxiao发布了新的文献求助10
11秒前
fff完成签到,获得积分10
11秒前
jeansblue发布了新的文献求助10
12秒前
Jiaowen完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
14秒前
研友_LmeK4L发布了新的文献求助10
14秒前
15秒前
领奖完成签到,获得积分10
15秒前
15秒前
快乐难敌完成签到,获得积分10
15秒前
15秒前
韩安蕾发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
18秒前
浅帅发布了新的文献求助10
19秒前
脑洞疼应助shenmin采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600946
求助须知:如何正确求助?哪些是违规求助? 4010853
关于积分的说明 12417790
捐赠科研通 3690768
什么是DOI,文献DOI怎么找? 2034618
邀请新用户注册赠送积分活动 1067979
科研通“疑难数据库(出版商)”最低求助积分说明 952609