Joint Classification of Hyperspectral and LiDAR Data Using Height Information Guided Hierarchical Fusion-and-Separation Network

激光雷达 计算机科学 人工智能 高光谱成像 模式识别(心理学) 特征(语言学) 卷积神经网络 模态(人机交互) 遥感 哲学 地质学 语言学
作者
Tiecheng Song,Zheng Zeng,Chenqiang Gao,Haonan Chen,Jun Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:10
标识
DOI:10.1109/tgrs.2024.3353775
摘要

Hyperspectral image (HSI) and LiDAR data are complementary to each other, which can be combined to improve the classification performance. However, existing deep network models do not sufficiently consider their complementarity to design the network structure and loss functions. Moreover, there lacks a hierarchical mutual-assistance learning mechanism that leverages the modality-shared features to enhance the modality-specific ones and vice versa. In view of these, we propose a novel height information guided hierarchical fusion-and-separation network (HFSNet) for joint classification of HSI and LiDAR data. HFSNet consists of three major components, i.e., dual-structure feature encoders (DSFEs), feature fusion-and-separation blocks (F2SBs), and an edge decoder (ED). Specifically, the transformer and convolutional neural network are introduced in DSFEs to encode the spectral and spatial information of HSI and LiDAR data, respectively. In F2SBs, the deformable convolution-based height information guided fusion module and the modality separation refinement module are proposed to sequentially extract modality-shared and modality-specific features. Additionally, the ED is incorporated into our model to predict the LiDAR edge map from the HSI feature to improve the model's generalization ability. As such, the learned features from HSI and LiDAR data are deeply fused and mutually enhanced. Experiments on three benchmark datasets show the superiority of HFSNet to the state-of-the-art methods for jointly classifying HSI and LiDAR data with limited training samples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
竹筏过海应助wyd采纳,获得30
1秒前
阿兰完成签到 ,获得积分10
1秒前
小二郎应助阿爽采纳,获得10
1秒前
1秒前
1秒前
1秒前
周em12_完成签到,获得积分10
2秒前
马美丽完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
在水一方应助复杂的宝马采纳,获得10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
中科院一区选手完成签到,获得积分10
4秒前
keyangouderic完成签到,获得积分10
5秒前
Henry给Henry的求助进行了留言
5秒前
6秒前
夕诙完成签到,获得积分0
6秒前
陈陈陈发布了新的文献求助10
6秒前
自由香魔发布了新的文献求助10
6秒前
7秒前
guons发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
虚心的不二完成签到 ,获得积分10
9秒前
xuxiaoyan发布了新的文献求助10
9秒前
9秒前
江脸脸完成签到,获得积分10
10秒前
JIERAN发布了新的文献求助10
10秒前
乐乐应助颜好采纳,获得10
10秒前
11秒前
11秒前
搞份炸鸡778完成签到,获得积分10
11秒前
尉迟希望发布了新的文献求助10
12秒前
向北完成签到 ,获得积分10
12秒前
莫默完成签到,获得积分10
13秒前
着急的语海完成签到,获得积分10
13秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960857
求助须知:如何正确求助?哪些是违规求助? 3507137
关于积分的说明 11133875
捐赠科研通 3239467
什么是DOI,文献DOI怎么找? 1790120
邀请新用户注册赠送积分活动 872177
科研通“疑难数据库(出版商)”最低求助积分说明 803149