Improved Water Strider Algorithm With Convolutional Autoencoder for Lung and Colon Cancer Detection on Histopathological Images

自编码 卷积神经网络 人工智能 计算机科学 深度学习 模式识别(心理学) 特征(语言学) 肺癌 结直肠癌 特征提取 算法 癌症 病理 医学 内科学 哲学 语言学
作者
Hamed Alqahtani,Eatedal Alabdulkreem,Faiz Abdullah Alotaibi,Mrim M. Alnfiai,Chinu Singla,Ahmed S. Salama
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 949-956 被引量:5
标识
DOI:10.1109/access.2023.3346894
摘要

Lung and colon cancers are deadly diseases that can develop concurrently in organs and undesirably affect human life in some special cases. The detection of these cancers from histopathological images poses a complex challenge in medical diagnostics. Advanced image processing techniques, including deep learning algorithms, offer a solution by analyzing intricate patterns and structures in histopathological slides. The integration of artificial intelligence in histopathological analysis not only improves the proficiency of cancer detection but also holds the potential to increase prognostic assessments, eventually contributing to effective treatment strategies for patients with lung and colon cancers. This manuscript presents an Improved Water Strider Algorithm with Convolutional Autoencoder for Lung and Colon Cancer Detection (IWSACAE-LCCD) on HIs. The major aim of the IWSACAE-LCCD technique aims to detect lung and colon cancer. For noise removal process, median filtering (MF) approach can be used. Besides, deep convolutional neural network based MobileNetv2 model can be applied as a feature extractor with IWSA based hyperparameter optimizer. Finally, convolutional autoencoder (CAE) model can be applied to detect the presence of lung and colon cancer. To enhance the detection results of the IWSACAE-LCCD technique, a series of simulations were performed. The obtained results highlighted that the IWSACAE-LCCD technique outperforms other approaches in terms of different measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助研友_8RyzBZ采纳,获得10
刚刚
嘟噜完成签到 ,获得积分10
1秒前
chigga完成签到,获得积分10
1秒前
今后应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
chigga发布了新的文献求助10
2秒前
牧水云应助科研通管家采纳,获得50
2秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
牧水云应助科研通管家采纳,获得50
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
英姑应助科研通管家采纳,获得30
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
yangsi发布了新的文献求助10
4秒前
4秒前
DDD完成签到,获得积分10
4秒前
顾城浪子完成签到,获得积分10
5秒前
7秒前
CZLhaust发布了新的文献求助10
7秒前
黑白灰发布了新的文献求助10
8秒前
拼搏愚志发布了新的文献求助10
8秒前
9秒前
ccc完成签到,获得积分10
9秒前
气945发布了新的文献求助10
10秒前
10秒前
11秒前
j7337发布了新的文献求助10
11秒前
开心之王发布了新的文献求助10
11秒前
Alan发布了新的文献求助10
12秒前
13秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265018
求助须知:如何正确求助?哪些是违规求助? 2904924
关于积分的说明 8332175
捐赠科研通 2575367
什么是DOI,文献DOI怎么找? 1399745
科研通“疑难数据库(出版商)”最低求助积分说明 654537
邀请新用户注册赠送积分活动 633353