Dynamic order allocation in a duopoly hybrid workforce of competition: A machine learning approach

汉密尔顿-雅各比-贝尔曼方程 双头垄断 数学优化 计算机科学 贝尔曼方程 强化学习 利润(经济学) 微分博弈 单调函数 经济 数理经济学 数学 微观经济学 古诺竞争 人工智能 数学分析
作者
Shuhua Chang,Yuxing Zhang,Shuhua Chang
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:315 (2): 668-690
标识
DOI:10.1016/j.ejor.2023.12.026
摘要

We develop a continuous-time stochastic differential game model that aims to capture market demand and stochastic cross-network effects, and we seek to find equilibrium order allocation strategies between the firm and the platform. By solving the Hamilton–Jacobi-Bellman (HJB) partial differential equation system, we obtain the feedback equilibrium. For a simple scenario, we derive the analytical solution which indicates that the equilibrium expenditures depend only on the marginal market thickness, and that market thickness is consistently advantageous for the value function. For the complex scenario, we propose a machine learning approach based on the Deep Galerkin Method to solve high-dimensional nonlinear HJB systems, and we demonstrate its good convergence properties. Based on reliable parameter values, our simulation results show that: (1) For higher market thickness, value functions exhibit greater sensitivity to changes in cross-network effects. (2) For a given cross-network effect, the equilibrium acquisition and retention expenditures display significant sensitivity to market thickness and time, respectively. To show the interaction between the two platforms, we present the following two results. One is that for the platform adopting a high pricing strategy, its acquisition expenditures exceed those of its competitor, while retention expenditures are the opposite. The other is that as the cross-network effect of the platform increases, its maximum profit initially rises and then declines, and the time of occurrence of the maximum profit monotonically decreases. In contrast, the competitor’s maximum profit initially declines and then rises, and the time of occurrence of the maximum profit monotonically increases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助Sou采纳,获得30
1秒前
2秒前
部川苦茶发布了新的文献求助10
2秒前
2秒前
隐形曼青应助yjmsnh采纳,获得30
2秒前
3秒前
土豪的从凝完成签到,获得积分10
6秒前
希望天下0贩的0应助馨橣采纳,获得10
7秒前
Zoeytam完成签到,获得积分10
8秒前
透视眼完成签到 ,获得积分10
10秒前
研友_VZG7GZ应助大喜采纳,获得50
10秒前
tutu完成签到,获得积分10
11秒前
自由灵枫发布了新的文献求助10
12秒前
14秒前
梁梁梁完成签到,获得积分10
15秒前
雨下完成签到 ,获得积分10
15秒前
无敌小炣爱完成签到,获得积分10
17秒前
Orange应助热心市民小张采纳,获得10
17秒前
Cashwa完成签到,获得积分10
19秒前
19秒前
沐秋发布了新的文献求助10
20秒前
kang发布了新的文献求助10
20秒前
河河发布了新的文献求助10
20秒前
部川苦茶发布了新的文献求助10
21秒前
自由灵枫完成签到,获得积分10
21秒前
22秒前
animenz完成签到,获得积分10
23秒前
25秒前
二连完成签到,获得积分10
26秒前
orixero应助科研通管家采纳,获得10
27秒前
领导范儿应助科研通管家采纳,获得10
27秒前
Ava应助科研通管家采纳,获得10
27秒前
大模型应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
27秒前
27秒前
汉堡包应助科研通管家采纳,获得10
27秒前
拼搏笑阳应助科研通管家采纳,获得10
27秒前
JamesPei应助科研通管家采纳,获得10
27秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206745
求助须知:如何正确求助?哪些是违规求助? 2856198
关于积分的说明 8102939
捐赠科研通 2521287
什么是DOI,文献DOI怎么找? 1354335
科研通“疑难数据库(出版商)”最低求助积分说明 642012
邀请新用户注册赠送积分活动 613207