Bearing fault diagnosis based on variational autoencoder and non-local block wide kernel convolutional neural network

自编码 核(代数) 卷积神经网络 块(置换群论) 断层(地质) 计算机科学 人工智能 模式识别(心理学) 人工神经网络 算法 数学 地质学 组合数学 地震学
作者
Li Jiang,Silong Guo,Shunsheng Guo,Kejia Zhuang,Yibing Li
标识
DOI:10.1177/09544062231222806
摘要

At present, convolutional neural network (CNN) is widely applied to bearing fault diagnosis However, the diagnosis performance will descend under the strong noise condition in the real industrial environment. Therefore, a denoising method named non-local block wide kernel CNN (NLBWCNN) is proposed based on wide convolution kernel and non-local block. Additionally, the data in the mechanical fault state is less than that in the health state in actual industrial production, which leads to the data imbalance problem. However, the fault classifier based on CNN needs a large amount of balanced data to train. Otherwise, it will not be fully trained, and thus its generalization ability will be affected. As a result, a method called VAE-NLBWCNN (variational autoencoder and NLBWCNN) is proposed for diagnosing bearing faults. The method employs variational autoencoder balanced the fault data. And then, the NLBWCNN is utilized to denoise and classify the fault data. The proposed VAE-NLBWCNN method is validated on three bearing datasets. The comparative experiments demonstrate that the proposed method can effectively expand unbalanced data and achieve the best performance in various noise conditions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏天完成签到,获得积分10
1秒前
1秒前
飞雪发布了新的文献求助10
3秒前
坤坤完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
原鑫完成签到,获得积分10
4秒前
端庄金针菇完成签到,获得积分10
5秒前
6秒前
充电宝应助紧张的毛衣采纳,获得10
7秒前
阿网完成签到,获得积分10
7秒前
陶1122完成签到,获得积分10
7秒前
8秒前
ceeray23应助科研通管家采纳,获得10
9秒前
coolkid应助科研通管家采纳,获得10
9秒前
ceeray23应助科研通管家采纳,获得10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
coolkid应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
wy.he应助科研通管家采纳,获得10
9秒前
汝吾发布了新的文献求助30
10秒前
11秒前
11秒前
CodeCraft应助灵魂采纳,获得10
12秒前
lllll发布了新的文献求助10
13秒前
17秒前
下雨完成签到,获得积分10
17秒前
tt发布了新的文献求助10
18秒前
bxxxxx应助王京华采纳,获得30
21秒前
23秒前
烟花应助棋士采纳,获得10
24秒前
妮儿完成签到,获得积分10
24秒前
钫人完成签到,获得积分10
24秒前
tt完成签到,获得积分10
24秒前
繁荣的凝荷完成签到 ,获得积分10
25秒前
mylaodao完成签到,获得积分0
25秒前
科目三应助灵巧的芷容采纳,获得10
26秒前
Mayday完成签到,获得积分10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951079
求助须知:如何正确求助?哪些是违规求助? 3496471
关于积分的说明 11082339
捐赠科研通 3226915
什么是DOI,文献DOI怎么找? 1784061
邀请新用户注册赠送积分活动 868165
科研通“疑难数据库(出版商)”最低求助积分说明 801052