亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

AI-driven synthetic data generation for accelerating hepatology research: A study of the United Network for Organ Sharing (UNOS) database

器官共享联合网络 肝病学 复制 医学 数据共享 数据库 计算机科学 合成数据 内科学 肝移植 数据挖掘 统计 人工智能 移植 数学 病理 替代医学
作者
Joseph Ahn,Yung‐Kyun Noh,Mingzhao Hu,Xiaotong Shen,Douglas A. Simonetto,Patrick S. Kamath,Rohit S. Loomba,Vijay H. Shah
出处
期刊:Hepatology [Wiley]
标识
DOI:10.1097/hep.0000000000001299
摘要

Background and Aims: Clinical hepatology research often faces limited data availability, underrepresentation of minority groups, and complex data-sharing regulations. Synthetic data—artificially generated patient records designed to mirror real-world distributions— offers a potential solution. We hypothesized that diffusion models, a state-of-the-art generative technique, could produce synthetic liver transplant waitlist data from the United Network for Organ Sharing (UNOS) database that maintains statistical fidelity, replicates clinical correlations and survival patterns, and ensures robust privacy protection. Methods: Diffusion models were used to generate synthetic patient cohorts mirroring the UNOS liver transplant waitlist database between years 2019 and 2023. Statistical fidelity was assessed using Maximum Mean Discrepancy (MMD) and Wasserstein distance, correlation analysis, and variable-level metrics. Clinical utility was evaluated by comparing transplant-free survival via Kaplan-Meier curves and the MELD score performance. Privacy was quantified using the Distance to Closest Record (DCR) and attribute disclosure risk assessments. Results: The synthetic dataset was nearly indistinguishable from the original dataset (MMD=0.002, standardized Wasserstein distance<1.0), preserving clinically relevant correlations and survival patterns as evidenced by similar median survival times (110 vs. 101 days) and 5-year survival rates (22.2% vs. 22.8%). MELD-based 90-day mortality prediction was maintained (original AUC=0.839 vs. synthetic AUC=0.844). Privacy metrics indicated no identifiable patient matches, and mean DCR values ensured that synthetic individuals were not direct replicas of real patients. Conclusion: AI-generated synthetic data derived from diffusion models can faithfully replicate complex hepatology datasets, maintain key clinical signals, and ensure strong privacy safeguards. This approach can help address data scarcity, enhance model generalizability, foster multi-institutional collaboration, and accelerate progress in hepatology research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shl发布了新的文献求助10
13秒前
科研通AI5应助shl采纳,获得10
20秒前
55秒前
JazzWon发布了新的文献求助10
59秒前
mzzq1993完成签到 ,获得积分10
1分钟前
JazzWon完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
2分钟前
思源应助江湖边缘人采纳,获得10
3分钟前
打打应助cathe采纳,获得10
3分钟前
田様应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
shl发布了新的文献求助10
4分钟前
科研通AI5应助shl采纳,获得10
5分钟前
5分钟前
Hans完成签到,获得积分10
5分钟前
kate发布了新的文献求助20
5分钟前
5分钟前
5分钟前
研友_Z7OglZ完成签到,获得积分10
5分钟前
6分钟前
风衣拖地完成签到 ,获得积分10
6分钟前
研友_Z7OglZ发布了新的文献求助10
6分钟前
shl发布了新的文献求助10
6分钟前
科研通AI5应助shl采纳,获得10
6分钟前
大模型应助shl采纳,获得10
6分钟前
lskjdflass完成签到,获得积分10
6分钟前
傲娇的从露完成签到,获得积分20
6分钟前
kate完成签到,获得积分10
6分钟前
8分钟前
8分钟前
datang发布了新的文献求助10
8分钟前
根本睡不了完成签到 ,获得积分10
8分钟前
8分钟前
didi123发布了新的文献求助10
8分钟前
9分钟前
山竹完成签到 ,获得积分10
9分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
Fault identification method of electrical automation distribution equipment in distribution networks based on neural network 560
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3580405
求助须知:如何正确求助?哪些是违规求助? 3149935
关于积分的说明 9479392
捐赠科研通 2851433
什么是DOI,文献DOI怎么找? 1567834
邀请新用户注册赠送积分活动 734254
科研通“疑难数据库(出版商)”最低求助积分说明 720579