Enzyme enhancement through computational stability design targeting NMR-determined catalytic hotspots

酶动力学 蛋白质工程 合理设计 催化作用 化学 催化效率 理论(学习稳定性) 分子动力学 基质(水族馆) 组合化学 定向进化 计算化学 活动站点 材料科学 纳米技术 计算机科学 生物化学 生物 突变体 生态学 机器学习 基因
作者
Luis I. Gutierrez-Rus,Eva Vos,David Pantoja‐Uceda,Gyula Hoffka,Jose Gutierrez-Cardenas,Mariano Ortega‐Muñoz,Valeria A. Risso,M. Ángeles Jiménez,Shina Caroline Lynn Kamerlin,José M. Sánchez‐Ruiz
标识
DOI:10.26434/chemrxiv-2024-7xxzg-v2
摘要

Enzymes are the quintessential green catalysts, but realizing their full potential for biotechnology typically requires improvement of their biomolecular properties. Catalysis enhancement, however, is often accompanied by impaired stability. Here, we show how the interplay between activity and stability in enzyme optimization can be efficiently addressed by coupling two recently proposed methodologies for guiding directed evolution. We first identify catalytic hotspots from chemical shift perturbations induced by transition-state-analogue binding and then use computational/phylogenetic design (FuncLib) to predict stabilizing combinations of mutations at sets of such hotspots. We test this approach on a previously designed de novo Kemp eliminase, which is already highly optimized in terms of both activity and stability. Most tested variants displayed substantially increased denaturation temperatures and purification yields. Notably, our most efficient engineered variant shows a ~3-fold enhancement in activity (kcat 1700 s-1, kcat/KM 4.3·105 M-1s-1) from an already heavily optimized starting variant, resulting in the most proficient proton-abstraction Kemp eliminase designed to date, with a catalytic efficiency on a par with naturally occurring enzymes. Molecular simulations pinpoint the origin of this catalytic enhancement as being due to the progressive elimination of a catalytically inefficient substrate conformation that is present in the original design. Remarkably, interaction network analysis identifies a significant fraction of catalytic hot-spots, thus providing a computational tool which we show to be useful even for natural-enzyme engineering. Overall, our work showcases the power of dynamically guided enzyme engineering as a design principle for obtaining novel biocatalysts with tailored physicochemical properties, towards even anthropogenic reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒冷的觅露完成签到,获得积分10
刚刚
赛百味完成签到,获得积分10
刚刚
1秒前
彩色的沂发布了新的文献求助10
1秒前
jjj完成签到,获得积分10
1秒前
beiyuan完成签到,获得积分10
2秒前
3秒前
溶脂发布了新的文献求助10
3秒前
Breeze发布了新的文献求助10
3秒前
5秒前
留胡子的画板完成签到 ,获得积分10
5秒前
研究牲发布了新的文献求助10
6秒前
疯狂的乌发布了新的文献求助10
7秒前
likestring完成签到,获得积分20
7秒前
dake完成签到,获得积分10
8秒前
星辰大海应助D515采纳,获得10
8秒前
li完成签到,获得积分10
9秒前
靓丽的冰旋完成签到,获得积分10
10秒前
10秒前
Wink14551发布了新的文献求助10
11秒前
12秒前
完美世界应助彩色的沂采纳,获得10
12秒前
慕青应助孔乙己采纳,获得10
13秒前
疯狂的乌完成签到,获得积分10
14秒前
勤恳马里奥发布了新的文献求助200
14秒前
15秒前
17秒前
zho发布了新的文献求助10
18秒前
apt应助溶脂采纳,获得10
19秒前
20秒前
21秒前
ZY完成签到 ,获得积分10
21秒前
22秒前
22秒前
23秒前
生动初雪完成签到 ,获得积分10
24秒前
24秒前
袁rrrr完成签到 ,获得积分20
24秒前
hyacinth完成签到,获得积分10
24秒前
VvV完成签到,获得积分10
25秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740949
求助须知:如何正确求助?哪些是违规求助? 3283763
关于积分的说明 10036623
捐赠科研通 3000513
什么是DOI,文献DOI怎么找? 1646539
邀请新用户注册赠送积分活动 783771
科研通“疑难数据库(出版商)”最低求助积分说明 750427