带隙
钙钛矿(结构)
密度泛函理论
八面体
晶体结构
兴奋剂
结晶学
电子结构
电介质
电导率
Crystal(编程语言)
材料科学
相(物质)
电子能带结构
化学
凝聚态物理
光电子学
物理化学
计算化学
物理
有机化学
计算机科学
程序设计语言
作者
Xiaoxiao Zhang,Pingjian Wang,Qingyu Wu,Ling Xu,Mingyu Chen,Yunxin Kang,Chengshuai Sun,Guangsheng Wei,Zhuhui Qiao,Zhonghai Lin
标识
DOI:10.1088/1361-6641/ac86ee
摘要
Abstract PDAPb(I 1− x Br x ) 4 (NH 3 CH 2 CH 2 CH 2 NH 3 Pb(I 1− x Br x ) 4 , 0 ⩽ x ⩽ 1) is a two-dimensional Dion–Jacobson phase perovskite that has attracted extensive attention owing to its potential as a promising candidate for optoelectronic (OE) application. Herein, the structural, electronic, and optoelectronic properties of PDAPb(I 1− x Br x ) 4 by gradually substituting I with Br at 1/4 intervals starting from PDAPbI 4 based on the first-principles approach of density functional theory. With the increase in Br content, the crystal volume of PDAPb(I 1− x Br x ) 4 decreases nonlinearly. The electronic structure shows the bandgap presents an increasing trend (PDAPbI 4 (2.272 eV)–PDAPb(I 0.5 Br 0.5 ) 4 (2.475 eV)–PDAPbBr 4 (2.678 eV)). The most stable structure that can be obtained from the calculated formation energy ( E f ) is PDAPb(I 0.5 Br 0.5 ) 4 . The partial density of states reveals that the contribution of electrons is mainly related to the [PbX 6 ] 4− (X = I, Br) octahedron. The organic molecule PDA is almost not involved in the conductivity. The optoelectronic properties indicates that the characteristic peaks of the optoelectronic parameters of PDAPb(I 1− x Br x ) 4 coincide with the bandgap. The doping ratio of 0.5 not only has the largest dielectric coefficient, but also has good conductivity in the visible region. Therefore, PDAPb(I 0.5 Br 0.5 ) 4 is extremely promising for applications in OE industry. This study provides some theoretical guidance for experiments and the search for new efficient and environmentally friendly OE materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI