Neuromorphic one-shot learning utilizing a phase-transition material

神经形态工程学 计算机科学 索马 计算 尖峰神经网络 生物系统 人工神经网络 人工智能 神经科学 生物 算法
作者
Alessandro R. Galloni,Yifan Yuan,Minning Zhu,Haoming Yu,Ravindra Singh Bisht,Chung‐Tse Michael Wu,Christine Grienberger,Shriram Ramanathan,Aaron D. Milstein
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (17) 被引量:1
标识
DOI:10.1073/pnas.2318362121
摘要

Design of hardware based on biological principles of neuronal computation and plasticity in the brain is a leading approach to realizing energy- and sample-efficient AI and learning machines. An important factor in selection of the hardware building blocks is the identification of candidate materials with physical properties suitable to emulate the large dynamic ranges and varied timescales of neuronal signaling. Previous work has shown that the all-or-none spiking behavior of neurons can be mimicked by threshold switches utilizing material phase transitions. Here, we demonstrate that devices based on a prototypical metal-insulator-transition material, vanadium dioxide (VO 2 ), can be dynamically controlled to access a continuum of intermediate resistance states. Furthermore, the timescale of their intrinsic relaxation can be configured to match a range of biologically relevant timescales from milliseconds to seconds. We exploit these device properties to emulate three aspects of neuronal analog computation: fast (~1 ms) spiking in a neuronal soma compartment, slow (~100 ms) spiking in a dendritic compartment, and ultraslow (~1 s) biochemical signaling involved in temporal credit assignment for a recently discovered biological mechanism of one-shot learning. Simulations show that an artificial neural network using properties of VO 2 devices to control an agent navigating a spatial environment can learn an efficient path to a reward in up to fourfold fewer trials than standard methods. The phase relaxations described in our study may be engineered in a variety of materials and can be controlled by thermal, electrical, or optical stimuli, suggesting further opportunities to emulate biological learning in neuromorphic hardware.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
调皮问安发布了新的文献求助30
2秒前
周曦完成签到,获得积分10
2秒前
2秒前
鬼见愁完成签到,获得积分10
8秒前
8秒前
秋秋寒发布了新的文献求助10
8秒前
Ivy给Ivy的求助进行了留言
9秒前
11秒前
jhcraul完成签到,获得积分10
12秒前
ww完成签到,获得积分10
13秒前
0℃发布了新的文献求助10
14秒前
Magali发布了新的文献求助10
15秒前
17秒前
姜峰完成签到,获得积分10
18秒前
0℃完成签到,获得积分20
19秒前
20秒前
21秒前
21秒前
fryeia发布了新的文献求助10
23秒前
MRLAN发布了新的文献求助30
23秒前
yk发布了新的文献求助30
23秒前
Hiowa完成签到,获得积分20
23秒前
小二郎应助开朗雪巧采纳,获得10
24秒前
今后应助和谐的乌冬面采纳,获得10
24秒前
26秒前
静不净发布了新的文献求助10
26秒前
tianzml0应助幸福的白柏采纳,获得10
28秒前
32秒前
刘佳佳完成签到 ,获得积分10
38秒前
38秒前
cherrymoon3应助开朗雪巧采纳,获得10
39秒前
41秒前
喜悦的向日葵完成签到,获得积分10
41秒前
顾矜应助白菜也挺贵采纳,获得10
42秒前
42秒前
wahaha发布了新的文献求助10
43秒前
wangyang发布了新的文献求助10
46秒前
柯南发布了新的文献求助10
46秒前
HXY发布了新的文献求助10
47秒前
高分求助中
Tracking and Data Fusion: A Handbook of Algorithms 1000
Models of Teaching(The 10th Edition,第10版!)《教学模式》(第10版!) 800
La décision juridictionnelle 800
Rechtsphilosophie und Rechtstheorie 800
Nonlocal Integral Equation Continuum Models: Nonstandard Symmetric Interaction Neighborhoods and Finite Element Discretizations 600
Academic entitlement: Adapting the equity preference questionnaire for a university setting 500
Arkiv för kemi 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2876532
求助须知:如何正确求助?哪些是违规求助? 2487892
关于积分的说明 6736413
捐赠科研通 2170890
什么是DOI,文献DOI怎么找? 1153345
版权声明 585924
科研通“疑难数据库(出版商)”最低求助积分说明 566288