GTFE-Net-BiLSTM-AM: An intelligent feature recognition method for natural gas pipelines

特征(语言学) 天然气 网(多面体) 自然(考古学) 管道运输 计算机科学 石油工程 环境科学 工程类 地质学 废物管理 环境工程 数学 古生物学 哲学 语言学 几何学
作者
Lin Wang,Hu Cheng,Tingxia Ma,Zhongfeng Yang,Wannian Guo,Zhihao Mao,Junyu Guo,He Li
标识
DOI:10.1016/j.jgsce.2024.205311
摘要

The recognition of pipeline features contributes to its safe management by preventing severe consequences such as leakage resulting from bending deformation and denting under external pressure. However, extracting features of such a facility is complex and challenging when machine learning techniques are applied to feature recognition. Hence, this paper proposes a feature recognition technique for gas pipelines based on Gramian Time Frequency Enhancement Net (GTFE-Net), Bi-directional Long Short-Term Memory (BiLSTM) and attention mechanism (AM), namely GTFE-Net-BiLSTM-AM. Specifically, GTFE-Net is applied to enhance the time-frequency input bending strain signal, which is subsequently incorporated with the BiLSTM model to extract spatio-temporal features. The attention mechanism computes the corresponding weight of output features. The results show that the proposed method's recognition accuracy reaches 93.7%. The comparison study with the existing models validates the proposed method's superiority and shows that its accuracy is higher than that of the existing models (more than 0.9%) or their combined models (more than 1.1%). Overall, the proposed method contributes to the safety, reliability, and operation of natural gas pipelines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChatGPT发布了新的文献求助10
1秒前
丘比特应助wendinfgmei采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得30
6秒前
yznfly应助科研通管家采纳,获得30
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
Emma应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
ED应助科研通管家采纳,获得10
6秒前
YJL完成签到,获得积分10
6秒前
威武的匕完成签到,获得积分10
6秒前
打打应助科研通管家采纳,获得10
6秒前
6秒前
Hello应助科研通管家采纳,获得30
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
64658完成签到,获得积分10
7秒前
8秒前
orixero应助夏侯德东采纳,获得30
10秒前
Swilder完成签到 ,获得积分10
11秒前
哈哈哈哈发布了新的文献求助10
12秒前
田様应助HYLynn采纳,获得10
12秒前
Pendragon完成签到,获得积分10
13秒前
14秒前
科目三应助ZZQ采纳,获得10
15秒前
打打应助小皮不皮采纳,获得10
15秒前
Lucas应助啪唧采纳,获得10
16秒前
星辰大海应助怡然小蚂蚁采纳,获得10
16秒前
16秒前
GXY完成签到,获得积分10
17秒前
小将完成签到 ,获得积分10
18秒前
Yuksn发布了新的文献求助20
20秒前
研友_85YNe8完成签到,获得积分10
20秒前
Camellia发布了新的文献求助10
21秒前
小崔完成签到,获得积分10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958212
求助须知:如何正确求助?哪些是违规求助? 3504372
关于积分的说明 11118239
捐赠科研通 3235651
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565