GNN-Based Multimodal Named Entity Recognition

计算机科学 命名实体识别 实体链接 人工智能 自然语言处理 工程类 任务(项目管理) 知识库 系统工程
作者
Yunchao Gong,Xueqiang Lv,Zhu Yuan,Xindong You,Feng Hu,Yuzhong Chen
出处
期刊:The Computer Journal [Oxford University Press]
卷期号:67 (8): 2622-2632 被引量:2
标识
DOI:10.1093/comjnl/bxae030
摘要

Abstract The Multimodal Named Entity Recognition (MNER) task enhances the text representations and improves the accuracy and robustness of named entity recognition by leveraging visual information from images. However, previous methods have two limitations: (i) the semantic mismatch between text and image modalities makes it challenging to establish accurate internal connections between words and visual representations. Besides, the limited number of characters in social media posts leads to semantic and contextual ambiguity, further exacerbating the semantic mismatch between modalities. (ii) Existing methods employ cross-modal attention mechanisms to facilitate interaction and fusion between different modalities, overlooking fine-grained correspondences between semantic units of text and images. To alleviate these issues, we propose a graph neural network approach for MNER (GNN-MNER), which promotes fine-grained alignment and interaction between semantic units of different modalities. Specifically, to mitigate the issue of semantic mismatch between modalities, we construct corresponding graph structures for text and images, and leverage graph convolutional networks to augment text and visual representations. For the second issue, we propose a multimodal interaction graph to explicitly represent the fine-grained semantic correspondences between text and visual objects. Based on this graph, we implement deep-level feature fusion between modalities utilizing graph attention networks. Compared with existing methods, our approach is the first to extend graph deep learning throughout the MNER task. Extensive experiments on the Twitter multimodal datasets validate the effectiveness of our GNN-MNER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
学术大白发布了新的文献求助10
1秒前
freezing发布了新的文献求助20
2秒前
2秒前
3秒前
LYZSh发布了新的文献求助10
3秒前
文艺的小海豚完成签到,获得积分10
4秒前
安安安发布了新的文献求助10
4秒前
5秒前
Tong发布了新的文献求助10
5秒前
alooof发布了新的文献求助10
5秒前
Hello应助renweiyu采纳,获得10
5秒前
NexusExplorer应助解青文采纳,获得10
6秒前
6秒前
李健的小迷弟应助Lucian采纳,获得10
6秒前
7秒前
qqa完成签到,获得积分10
7秒前
7秒前
hunter发布了新的文献求助10
9秒前
HelenZ发布了新的文献求助10
10秒前
11秒前
Perseverance发布了新的文献求助10
11秒前
思源应助xxxksk采纳,获得10
12秒前
12秒前
ding应助dlfg采纳,获得10
12秒前
14秒前
NOIR4LU完成签到,获得积分10
15秒前
小沈小沈完成签到,获得积分10
15秒前
NexusExplorer应助pzk采纳,获得10
15秒前
longmad完成签到,获得积分10
17秒前
18秒前
Lucian发布了新的文献求助10
18秒前
山川的奴发布了新的文献求助10
18秒前
19秒前
20秒前
20秒前
Owen应助jl采纳,获得10
20秒前
个性凡儿完成签到,获得积分10
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell'associazione acetazolamide/pentossifillina nel trattamento dell'ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 730
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293913
求助须知:如何正确求助?哪些是违规求助? 2929935
关于积分的说明 8443790
捐赠科研通 2602039
什么是DOI,文献DOI怎么找? 1420302
科研通“疑难数据库(出版商)”最低求助积分说明 660534
邀请新用户注册赠送积分活动 643218