Aberrant Driving Behavior Prediction for Urban Bus Drivers in Taiwan Using Heart Rate Variability and Various Machine Learning Approaches: A Pilot Study

随机森林 逻辑回归 朴素贝叶斯分类器 支持向量机 心率变异性 机器学习 毒物控制 预测建模 模拟 计算机科学 工程类 人工智能 运输工程 医学 心率 医疗急救 血压 放射科
作者
Cheng-Yu Tsai,Youxin Lin,Wen‐Te Liu,He-in Cheong,Robert Houghton,Wenhua Hsu,Iulia Manole,Yi-Shin Liu,Jiunn‐Horng Kang,Kang‐Yun Lee,Yi‐Chun Kuan,Hsin‐Chien Lee,Cheng-Jung Wu,Lok-Yee Joyce Li,Wun-Hao Cheng,Shu‐Chuan Ho,Shang‐Yang Lin,Arnab Majumdar
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (3): 1304-1320 被引量:1
标识
DOI:10.1177/03611981221123802
摘要

Objective: Aberrant driving behavior (ADB) decreases road safety and is particularly relevant for urban bus drivers, who are required to drive daily shifts of considerable duration. Although numerous frameworks based on human physiological features have been applied to predict ADB, the research remains at an early stage. This study used heart rate variability (HRV) parameters to establish ADB occurrence prediction models with various machine learning approaches. Methods: Twelve Taiwanese urban bus drivers were recruited for four consecutive days of naturalistic driving data collection (from their routine routes) between March and April 2020; driving behaviors and physiological signals were obtained from provided devices. Weather and traffic congestion information was determined from public data, while sleep quality and professional driving experience were self-reported. To develop the ADB prediction model, several machine learning models—logistic regression, random forest, naive Bayes, support vector machine, and gated recurrent unit (GRU)—were trained and 10-fold cross-validated by using the testing data. Results: Most drivers with ADB reported deficient sleep quality (≤80%), with significantly higher mean scores on the Karolinska Sleepiness Scale and driver behavior questionnaire subcategory of lapses and errors than drivers without ADB. Next, HRV indices significantly differed between the measurement of a pre-ADB event and a baseline. The accuracy of the GRU models ranged from 78.84% ± 1.49% to 89.57% ± 1.31%. Conclusion: Drivers with ADB tend to have inadequate sleep quality, which may increase their fatigue levels and impair driving performance. The established time-series models can be considered for ADB occurrence prediction among urban bus drivers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
再沉默完成签到,获得积分10
1秒前
1秒前
1秒前
明亮无颜发布了新的文献求助20
2秒前
2秒前
谁还没有个生活完成签到,获得积分10
2秒前
Feng发布了新的文献求助10
2秒前
zzz发布了新的文献求助10
2秒前
MailkMonk发布了新的文献求助10
2秒前
2秒前
xuxuxu完成签到,获得积分10
3秒前
文龙完成签到 ,获得积分10
3秒前
ximomm完成签到,获得积分10
3秒前
无不破哉发布了新的文献求助10
3秒前
3秒前
研友_bZzkR8完成签到,获得积分10
4秒前
XIXI发布了新的文献求助30
4秒前
再沉默发布了新的文献求助10
5秒前
子俞发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
打打应助习习采纳,获得10
6秒前
bluer发布了新的文献求助10
7秒前
8秒前
8秒前
科研通AI5应助无悔呀采纳,获得10
8秒前
毛毛虫完成签到,获得积分10
8秒前
快乐小文完成签到,获得积分10
8秒前
Nooooo发布了新的文献求助10
9秒前
9秒前
贰鸟应助木之以南采纳,获得10
9秒前
无不破哉完成签到,获得积分20
9秒前
Dai WJ发布了新的文献求助10
10秒前
黄大师完成签到 ,获得积分10
10秒前
愤怒的河虾完成签到,获得积分10
10秒前
所所应助XIXI采纳,获得10
10秒前
麻麻发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678