润湿
表面粗糙度
表面光洁度
材料科学
曲面(拓扑)
接触角
润湿转变
涂层
复合材料
纳米技术
化学物理
化学
几何学
数学
作者
Jinghui Zhi,Shuaijun Wang,Junhui Zhang,Xiaoguang Duan,Junfeng Wang
出处
期刊:Langmuir
[American Chemical Society]
日期:2022-10-10
卷期号:38 (42): 12841-12848
被引量:1
标识
DOI:10.1021/acs.langmuir.2c01778
摘要
Though superliquid-repelling surfaces are universally important in the fields of fundamental research and industrial production, the understanding and development of these surfaces to impacting liquid droplets remain elusive, especially the changes of wettability states. Surface roughness is required to obtain superliquid-repelling surfaces. However, the effect of surface roughness on the transition of these surfaces' wettability states is uncertain. Herein, we unveiled the relationship of surface roughness on regulating the wettability states of superliquid-repelling surfaces with randomly distributed rough structures through experiment and calculations. The roughness was controlled via regulating the size of surface rough structures, which were formed by a facile coating method. The results indicated that the surface rough structures could impact the value of the polar component (γsp) and then impact the wettability states of superliquid-repelling surfaces. Quantitatively, when the increment of surface roughness was low, the decrement of γsp was low and the wettability state of the superliquid-repelling surface was superhydrophobicity. When the increment of surface roughness was high, the decrement of γsp was high and the wettability state of the superliquid-repelling surface converted to superamphiphobicity. The findings will shed light onto the development of superliquid-repelling surfaces in future studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI