TRPM7型
细胞生物学
淀粉样蛋白(真菌学)
激酶
生物
认知功能衰退
神经科学
阿尔茨海默病
淀粉样β
受体
化学
瞬时受体电位通道
内科学
医学
病理
痴呆
疾病
生物化学
作者
Shimeng Zhang,Feifei Cao,Wei Li,Nashat Abumaria
出处
期刊:Science Signaling
[American Association for the Advancement of Science (AAAS)]
日期:2023-07-11
卷期号:16 (793)
被引量:11
标识
DOI:10.1126/scisignal.ade6325
摘要
Altered abundance or activity of the dual-function transient receptor potential melastatin-like 7 (TRPM7) protein is implicated in neurodegenerative disorders, including Alzheimer’s disease (AD). Toxic aggregation of amyloid-β (Aβ) in neurons is implicated in AD pathology. Here, we found that the kinase activity of TRPM7 is important to stimulate the degradation of Aβ. TRPM7 expression was decreased in hippocampal tissue samples from patients with AD and two mouse models of AD ( APP/PS1 and 5XFAD ). In cultures of hippocampal neurons from mice, overexpression of full-length TRPM7 or of its functional kinase domain M7CK prevented synapse loss induced by exogenous Aβ. In contrast, this neuroprotection was not afforded by overexpression of either the functional ion channel portion alone or a TRPM7 mutant lacking kinase activity. M7CK overexpression in the hippocampus of young and old 5XFAD mice prevented and reversed, respectively, memory deficits, synapse loss, and Aβ plaque accumulation. In both neurons and mice, M7CK interacted with and activated the metalloprotease MMP14 to promote Aβ degradation. Thus, TRPM7 loss in patients with AD may contribute to the associated Aβ pathology.
科研通智能强力驱动
Strongly Powered by AbleSci AI