Rebalanced Zero-Shot Learning

计算机科学 语义学(计算机科学) 人工智能 差异(会计) 机器学习 编码(集合论) 班级(哲学) 回归 数学 统计 会计 业务 集合(抽象数据类型) 程序设计语言
作者
Zihan Ye,Guanyu Yang,Xiao-Bo Jin,Youfa Liu,Kaizhu Huang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 4185-4198 被引量:7
标识
DOI:10.1109/tip.2023.3295738
摘要

Zero-shot learning (ZSL) aims to identify unseen classes with zero samples during training. Broadly speaking, present ZSL methods usually adopt class-level semantic labels and compare them with instance-level semantic predictions to infer unseen classes. However, we find that such existing models mostly produce imbalanced semantic predictions, i.e. these models could perform precisely for some semantics, but may not for others. To address the drawback, we aim to introduce an imbalanced learning framework into ZSL. However, we find that imbalanced ZSL has two unique challenges: (1) Its imbalanced predictions are highly correlated with the value of semantic labels rather than the number of samples as typically considered in the traditional imbalanced learning; (2) Different semantics follow quite different error distributions between classes. To mitigate these issues, we first formalize ZSL as an imbalanced regression problem which offers empirical evidences to interpret how semantic labels lead to imbalanced semantic predictions. We then propose a re-weighted loss termed Re-balanced Mean-Squared Error (ReMSE), which tracks the mean and variance of error distributions, thus ensuring rebalanced learning across classes. As a major contribution, we conduct a series of analyses showing that ReMSE is theoretically well established. Extensive experiments demonstrate that the proposed method effectively alleviates the imbalance in semantic prediction and outperforms many state-of-the-art ZSL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
佳jia完成签到,获得积分10
1秒前
2秒前
2秒前
Foch发布了新的文献求助10
3秒前
4秒前
Ava应助jo采纳,获得30
5秒前
学术浓痰发布了新的文献求助10
6秒前
哭泣笑柳关注了科研通微信公众号
7秒前
清爽的丸子完成签到,获得积分10
7秒前
8秒前
zty发布了新的文献求助10
8秒前
9秒前
柠檬小lin发布了新的文献求助10
9秒前
9秒前
CipherSage应助忧愁的石灰水采纳,获得10
9秒前
weiyy完成签到 ,获得积分10
10秒前
33发布了新的文献求助10
11秒前
个性的紫菜应助Xx丶采纳,获得10
11秒前
13秒前
丸子圆圆应助wysxhdy采纳,获得10
13秒前
13秒前
beibei完成签到,获得积分20
15秒前
15秒前
15秒前
16秒前
星辰大海应助刘yuer采纳,获得10
16秒前
szy完成签到,获得积分20
18秒前
19秒前
浮三白完成签到,获得积分10
19秒前
19秒前
77qoq完成签到 ,获得积分10
20秒前
朱朱朱发布了新的文献求助10
20秒前
xinxin发布了新的文献求助10
22秒前
锤死别人的锤完成签到,获得积分10
23秒前
哭泣笑柳发布了新的文献求助10
23秒前
zhangxr发布了新的文献求助10
25秒前
zzze关注了科研通微信公众号
27秒前
科研通AI2S应助123采纳,获得10
30秒前
不配.应助123采纳,获得10
30秒前
CodeCraft应助Chawee采纳,获得10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145542
求助须知:如何正确求助?哪些是违规求助? 2796967
关于积分的说明 7822284
捐赠科研通 2453262
什么是DOI,文献DOI怎么找? 1305570
科研通“疑难数据库(出版商)”最低求助积分说明 627512
版权声明 601464