Satellite-based land surface temperature and soil moisture observations accurately predict soil respiration in temperate deciduous and coniferous forests

每年落叶的 环境科学 温带落叶林 含水量 土壤呼吸 温带气候 温带森林 卫星 大气科学 水文学(农业) 土壤科学 土壤水分 生态学 地质学 工程类 航空航天工程 生物 岩土工程
作者
Lelia Weiland,Cheryl Rogers,Camile Sothe,M. Altaf Arain,Alemu Gonsamo
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:340: 109618-109618 被引量:1
标识
DOI:10.1016/j.agrformet.2023.109618
摘要

Soil respiration, defined as the total flux of carbon dioxide (CO2) from the soil to the atmosphere, is a key ecosystem process that affects the regional and global carbon (C) cycles and is highly sensitive to temperature and soil moisture. It is challenging to quantify soil respiration at the ecosystem level from commonly used in-situ soil chamber measurements because of large spatial variability. Methods that provide temporally and spatially continuous estimates of soil respiration at various scales are vital to understand the impact of climate change on soil C stock. In this study, we evaluate three commonly used empirical models and a Random Forest machine learning algorithm applied to satellite derived estimates of land surface temperature (LST) and soil moisture to estimate soil respiration in temperate deciduous and coniferous forests in Canada. The models were calibrated using in-situ soil temperature and moisture and validated against in-situ measurements of soil CO2 fluxes (gCm−2day−1) from automatic soil chambers. We separately evaluate the performance of nighttime and daytime satellite-based LST and soil moisture observations in modeling soil respiration. The soil respiration models were also evaluated at daily and monthly time scales against in-situ measurements. Results indicate that models based on satellite LST, and soil moisture can explain more than 70% of the variability in observed soil respiration. Nighttime LST at a monthly time scale resulted in consistently higher accuracy than daytime LST in estimating soil respiration. Satellite observations resulted in comparable accuracy in estimating soil respiration as in-situ measurements. Satellite LST and soil moisture observations are indispensable data sources to estimate soil respiration at ecosystem level and its upscaling to regional and global scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
guoze完成签到,获得积分10
刚刚
1秒前
PONY完成签到,获得积分10
1秒前
fairyinn完成签到,获得积分10
1秒前
读二白发布了新的文献求助10
1秒前
碎碎发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
我想静静发布了新的文献求助10
4秒前
5秒前
sunny33发布了新的文献求助10
5秒前
啦啦啦啦完成签到,获得积分10
5秒前
niufuking发布了新的文献求助10
5秒前
zz发布了新的文献求助10
7秒前
ydl0927完成签到 ,获得积分10
7秒前
7秒前
NexusExplorer应助满意语芙采纳,获得10
7秒前
llll完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
CipherSage应助zhengyalan采纳,获得10
9秒前
10秒前
深情安青应助加油呀采纳,获得30
10秒前
lonely发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
想逃离发布了新的文献求助10
13秒前
Sally完成签到,获得积分10
13秒前
烟花应助GGbond采纳,获得10
13秒前
无花果应助GGbond采纳,获得10
13秒前
万能图书馆应助GGbond采纳,获得10
13秒前
13秒前
丘比特应助GGbond采纳,获得10
13秒前
orixero应助GGbond采纳,获得10
13秒前
李慧敏完成签到,获得积分10
13秒前
CipherSage应助GGbond采纳,获得10
14秒前
田様应助GGbond采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901