亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Satellite-based land surface temperature and soil moisture observations accurately predict soil respiration in temperate deciduous and coniferous forests

每年落叶的 环境科学 温带落叶林 含水量 土壤呼吸 温带气候 温带森林 卫星 大气科学 水文学(农业) 土壤科学 土壤水分 生态学 地质学 工程类 航空航天工程 生物 岩土工程
作者
Lelia Weiland,Cheryl Rogers,Camile Sothe,M. Altaf Arain,Alemu Gonsamo
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:340: 109618-109618 被引量:1
标识
DOI:10.1016/j.agrformet.2023.109618
摘要

Soil respiration, defined as the total flux of carbon dioxide (CO2) from the soil to the atmosphere, is a key ecosystem process that affects the regional and global carbon (C) cycles and is highly sensitive to temperature and soil moisture. It is challenging to quantify soil respiration at the ecosystem level from commonly used in-situ soil chamber measurements because of large spatial variability. Methods that provide temporally and spatially continuous estimates of soil respiration at various scales are vital to understand the impact of climate change on soil C stock. In this study, we evaluate three commonly used empirical models and a Random Forest machine learning algorithm applied to satellite derived estimates of land surface temperature (LST) and soil moisture to estimate soil respiration in temperate deciduous and coniferous forests in Canada. The models were calibrated using in-situ soil temperature and moisture and validated against in-situ measurements of soil CO2 fluxes (gCm−2day−1) from automatic soil chambers. We separately evaluate the performance of nighttime and daytime satellite-based LST and soil moisture observations in modeling soil respiration. The soil respiration models were also evaluated at daily and monthly time scales against in-situ measurements. Results indicate that models based on satellite LST, and soil moisture can explain more than 70% of the variability in observed soil respiration. Nighttime LST at a monthly time scale resulted in consistently higher accuracy than daytime LST in estimating soil respiration. Satellite observations resulted in comparable accuracy in estimating soil respiration as in-situ measurements. Satellite LST and soil moisture observations are indispensable data sources to estimate soil respiration at ecosystem level and its upscaling to regional and global scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
天凉王破完成签到 ,获得积分10
3秒前
燃烧的荷包蛋完成签到,获得积分10
6秒前
科研通AI6应助Am1r采纳,获得10
10秒前
深情安青应助waomi采纳,获得10
13秒前
OnlyHarbour完成签到,获得积分10
15秒前
搞怪人雄完成签到,获得积分10
19秒前
尼古拉斯铁柱完成签到 ,获得积分10
23秒前
1947188918完成签到,获得积分10
24秒前
科研通AI6应助VDC采纳,获得10
26秒前
smh完成签到,获得积分10
28秒前
我是老大应助科研通管家采纳,获得10
30秒前
30秒前
啰友痕武次子完成签到,获得积分10
31秒前
fhg完成签到 ,获得积分10
32秒前
33秒前
34秒前
无私的含海完成签到,获得积分10
35秒前
科研通AI6应助light采纳,获得10
36秒前
38秒前
绿水晶完成签到 ,获得积分10
40秒前
薛建伟完成签到 ,获得积分10
41秒前
45秒前
doctor2023发布了新的文献求助10
45秒前
zbx发布了新的文献求助10
47秒前
Qiao发布了新的文献求助30
50秒前
50秒前
Akim应助shimly0101xx采纳,获得10
53秒前
scc发布了新的文献求助30
54秒前
yyds举报狮子卷卷求助涉嫌违规
55秒前
安静的从梦完成签到 ,获得积分10
1分钟前
shimly0101xx完成签到,获得积分10
1分钟前
1分钟前
yyds举报王博求助涉嫌违规
1分钟前
shimly0101xx发布了新的文献求助10
1分钟前
星辰大海应助xxxllllll采纳,获得10
1分钟前
1分钟前
冷静新烟发布了新的文献求助10
1分钟前
sharkboy完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616992
求助须知:如何正确求助?哪些是违规求助? 4701328
关于积分的说明 14913361
捐赠科研通 4747615
什么是DOI,文献DOI怎么找? 2549174
邀请新用户注册赠送积分活动 1512299
关于科研通互助平台的介绍 1474049