Satellite-based land surface temperature and soil moisture observations accurately predict soil respiration in temperate deciduous and coniferous forests

每年落叶的 环境科学 温带落叶林 含水量 土壤呼吸 温带气候 温带森林 卫星 大气科学 水文学(农业) 土壤科学 土壤水分 生态学 地质学 岩土工程 工程类 航空航天工程 生物
作者
Lelia Weiland,Cheryl Rogers,Camile Sothe,M. Altaf Arain,Alemu Gonsamo
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:340: 109618-109618 被引量:1
标识
DOI:10.1016/j.agrformet.2023.109618
摘要

Soil respiration, defined as the total flux of carbon dioxide (CO2) from the soil to the atmosphere, is a key ecosystem process that affects the regional and global carbon (C) cycles and is highly sensitive to temperature and soil moisture. It is challenging to quantify soil respiration at the ecosystem level from commonly used in-situ soil chamber measurements because of large spatial variability. Methods that provide temporally and spatially continuous estimates of soil respiration at various scales are vital to understand the impact of climate change on soil C stock. In this study, we evaluate three commonly used empirical models and a Random Forest machine learning algorithm applied to satellite derived estimates of land surface temperature (LST) and soil moisture to estimate soil respiration in temperate deciduous and coniferous forests in Canada. The models were calibrated using in-situ soil temperature and moisture and validated against in-situ measurements of soil CO2 fluxes (gCm−2day−1) from automatic soil chambers. We separately evaluate the performance of nighttime and daytime satellite-based LST and soil moisture observations in modeling soil respiration. The soil respiration models were also evaluated at daily and monthly time scales against in-situ measurements. Results indicate that models based on satellite LST, and soil moisture can explain more than 70% of the variability in observed soil respiration. Nighttime LST at a monthly time scale resulted in consistently higher accuracy than daytime LST in estimating soil respiration. Satellite observations resulted in comparable accuracy in estimating soil respiration as in-situ measurements. Satellite LST and soil moisture observations are indispensable data sources to estimate soil respiration at ecosystem level and its upscaling to regional and global scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
777777完成签到,获得积分10
2秒前
silence完成签到 ,获得积分10
2秒前
3秒前
天天快乐应助Shanshan采纳,获得30
3秒前
吃吃菜菜吧完成签到 ,获得积分10
3秒前
Rarity完成签到,获得积分10
6秒前
6秒前
张明月完成签到,获得积分10
7秒前
honnic发布了新的文献求助10
8秒前
虚拟的羽毛完成签到,获得积分10
9秒前
直率的冥完成签到,获得积分20
10秒前
11秒前
NexusExplorer应助IAMXC采纳,获得10
11秒前
11秒前
11秒前
12秒前
13秒前
feiten发布了新的文献求助10
15秒前
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
共享精神应助hacker233采纳,获得30
16秒前
orixero应助科研通管家采纳,获得10
16秒前
Rainbow7发布了新的文献求助10
17秒前
墨痕发布了新的文献求助10
18秒前
直率的冥发布了新的文献求助30
18秒前
18秒前
简单完成签到 ,获得积分10
19秒前
19秒前
华华爸发布了新的文献求助30
20秒前
丘比特应助Rarity采纳,获得10
21秒前
21秒前
文艺大米发布了新的文献求助10
22秒前
saberLee完成签到 ,获得积分10
22秒前
快乐星球完成签到 ,获得积分10
24秒前
25秒前
25秒前
哈哈哈哈哈哈哈哈哈完成签到,获得积分10
26秒前
jk关闭了jk文献求助
26秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147998
求助须知:如何正确求助?哪些是违规求助? 2799021
关于积分的说明 7833250
捐赠科研通 2456174
什么是DOI,文献DOI怎么找? 1307159
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620