Satellite-based land surface temperature and soil moisture observations accurately predict soil respiration in temperate deciduous and coniferous forests

每年落叶的 环境科学 温带落叶林 含水量 土壤呼吸 温带气候 温带森林 卫星 大气科学 水文学(农业) 土壤科学 土壤水分 生态学 地质学 工程类 航空航天工程 生物 岩土工程
作者
Lelia Weiland,Cheryl Rogers,Camile Sothe,M. Altaf Arain,Alemu Gonsamo
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:340: 109618-109618 被引量:1
标识
DOI:10.1016/j.agrformet.2023.109618
摘要

Soil respiration, defined as the total flux of carbon dioxide (CO2) from the soil to the atmosphere, is a key ecosystem process that affects the regional and global carbon (C) cycles and is highly sensitive to temperature and soil moisture. It is challenging to quantify soil respiration at the ecosystem level from commonly used in-situ soil chamber measurements because of large spatial variability. Methods that provide temporally and spatially continuous estimates of soil respiration at various scales are vital to understand the impact of climate change on soil C stock. In this study, we evaluate three commonly used empirical models and a Random Forest machine learning algorithm applied to satellite derived estimates of land surface temperature (LST) and soil moisture to estimate soil respiration in temperate deciduous and coniferous forests in Canada. The models were calibrated using in-situ soil temperature and moisture and validated against in-situ measurements of soil CO2 fluxes (gCm−2day−1) from automatic soil chambers. We separately evaluate the performance of nighttime and daytime satellite-based LST and soil moisture observations in modeling soil respiration. The soil respiration models were also evaluated at daily and monthly time scales against in-situ measurements. Results indicate that models based on satellite LST, and soil moisture can explain more than 70% of the variability in observed soil respiration. Nighttime LST at a monthly time scale resulted in consistently higher accuracy than daytime LST in estimating soil respiration. Satellite observations resulted in comparable accuracy in estimating soil respiration as in-situ measurements. Satellite LST and soil moisture observations are indispensable data sources to estimate soil respiration at ecosystem level and its upscaling to regional and global scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿金完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
狂野的老黑完成签到 ,获得积分10
1秒前
1秒前
2秒前
wangmeiqiong完成签到,获得积分10
3秒前
isabellae完成签到,获得积分10
4秒前
zzzyk发布了新的文献求助30
4秒前
5秒前
简单的元珊完成签到 ,获得积分10
5秒前
5秒前
田様应助xixixii采纳,获得10
5秒前
5秒前
王jj发布了新的文献求助10
5秒前
周周完成签到,获得积分10
6秒前
wujingshuai完成签到,获得积分10
7秒前
NikiJu完成签到,获得积分10
7秒前
小虎同学完成签到,获得积分10
8秒前
cchuang完成签到,获得积分10
9秒前
欲扬先抑发布了新的文献求助10
9秒前
keyanlv完成签到,获得积分10
9秒前
9秒前
将个烂就发布了新的文献求助10
10秒前
Ray完成签到,获得积分0
11秒前
杭世立完成签到,获得积分10
12秒前
丘奇发布了新的文献求助10
12秒前
什么都不想完成签到,获得积分10
13秒前
枯风晓月完成签到,获得积分10
13秒前
QWER完成签到,获得积分10
13秒前
13秒前
honeylaker完成签到,获得积分10
14秒前
XO完成签到,获得积分10
17秒前
橘子海完成签到 ,获得积分10
17秒前
18秒前
coolkid完成签到 ,获得积分0
19秒前
俊逸香岚完成签到,获得积分10
19秒前
BruceLiu完成签到,获得积分10
19秒前
zgdzhj完成签到,获得积分10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600134
求助须知:如何正确求助?哪些是违规求助? 4685840
关于积分的说明 14839918
捐赠科研通 4675103
什么是DOI,文献DOI怎么找? 2538540
邀请新用户注册赠送积分活动 1505668
关于科研通互助平台的介绍 1471124