亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Satellite-based land surface temperature and soil moisture observations accurately predict soil respiration in temperate deciduous and coniferous forests

每年落叶的 环境科学 温带落叶林 含水量 土壤呼吸 温带气候 温带森林 卫星 大气科学 水文学(农业) 土壤科学 土壤水分 生态学 地质学 岩土工程 工程类 航空航天工程 生物
作者
Lelia Weiland,Cheryl Rogers,Camile Sothe,M. Altaf Arain,Alemu Gonsamo
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:340: 109618-109618 被引量:1
标识
DOI:10.1016/j.agrformet.2023.109618
摘要

Soil respiration, defined as the total flux of carbon dioxide (CO2) from the soil to the atmosphere, is a key ecosystem process that affects the regional and global carbon (C) cycles and is highly sensitive to temperature and soil moisture. It is challenging to quantify soil respiration at the ecosystem level from commonly used in-situ soil chamber measurements because of large spatial variability. Methods that provide temporally and spatially continuous estimates of soil respiration at various scales are vital to understand the impact of climate change on soil C stock. In this study, we evaluate three commonly used empirical models and a Random Forest machine learning algorithm applied to satellite derived estimates of land surface temperature (LST) and soil moisture to estimate soil respiration in temperate deciduous and coniferous forests in Canada. The models were calibrated using in-situ soil temperature and moisture and validated against in-situ measurements of soil CO2 fluxes (gCm−2day−1) from automatic soil chambers. We separately evaluate the performance of nighttime and daytime satellite-based LST and soil moisture observations in modeling soil respiration. The soil respiration models were also evaluated at daily and monthly time scales against in-situ measurements. Results indicate that models based on satellite LST, and soil moisture can explain more than 70% of the variability in observed soil respiration. Nighttime LST at a monthly time scale resulted in consistently higher accuracy than daytime LST in estimating soil respiration. Satellite observations resulted in comparable accuracy in estimating soil respiration as in-situ measurements. Satellite LST and soil moisture observations are indispensable data sources to estimate soil respiration at ecosystem level and its upscaling to regional and global scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
莫大完成签到 ,获得积分10
12秒前
14秒前
范良聪发布了新的文献求助10
17秒前
hjg发布了新的文献求助10
20秒前
yyy完成签到,获得积分10
23秒前
完美世界应助hjg采纳,获得10
26秒前
28秒前
summer发布了新的文献求助30
34秒前
jinmuna发布了新的文献求助10
37秒前
烟消云散完成签到,获得积分10
38秒前
hjg完成签到,获得积分20
40秒前
若知完成签到,获得积分20
44秒前
桦奕兮完成签到 ,获得积分10
47秒前
summer完成签到,获得积分20
50秒前
NexusExplorer应助jinmuna采纳,获得10
59秒前
无情的琳发布了新的文献求助10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
1分钟前
Okanryo完成签到,获得积分10
1分钟前
fishss完成签到 ,获得积分0
1分钟前
追寻从寒完成签到,获得积分10
1分钟前
1分钟前
1分钟前
研友_VZG7GZ应助诚心的安珊采纳,获得10
1分钟前
土书完成签到,获得积分10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
jinmuna发布了新的文献求助10
1分钟前
1分钟前
lxl完成签到,获得积分10
1分钟前
李健应助无情的琳采纳,获得10
1分钟前
ya完成签到,获得积分10
1分钟前
土书发布了新的文献求助30
1分钟前
lxl发布了新的文献求助10
1分钟前
所所应助wanna采纳,获得10
1分钟前
1分钟前
yueying完成签到,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714432
求助须知:如何正确求助?哪些是违规求助? 5223970
关于积分的说明 15273294
捐赠科研通 4865856
什么是DOI,文献DOI怎么找? 2612444
邀请新用户注册赠送积分活动 1562516
关于科研通互助平台的介绍 1519799