Satellite-based land surface temperature and soil moisture observations accurately predict soil respiration in temperate deciduous and coniferous forests

每年落叶的 环境科学 温带落叶林 含水量 土壤呼吸 温带气候 温带森林 卫星 大气科学 水文学(农业) 土壤科学 土壤水分 生态学 地质学 工程类 航空航天工程 生物 岩土工程
作者
Lelia Weiland,Cheryl Rogers,Camile Sothe,M. Altaf Arain,Alemu Gonsamo
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:340: 109618-109618 被引量:1
标识
DOI:10.1016/j.agrformet.2023.109618
摘要

Soil respiration, defined as the total flux of carbon dioxide (CO2) from the soil to the atmosphere, is a key ecosystem process that affects the regional and global carbon (C) cycles and is highly sensitive to temperature and soil moisture. It is challenging to quantify soil respiration at the ecosystem level from commonly used in-situ soil chamber measurements because of large spatial variability. Methods that provide temporally and spatially continuous estimates of soil respiration at various scales are vital to understand the impact of climate change on soil C stock. In this study, we evaluate three commonly used empirical models and a Random Forest machine learning algorithm applied to satellite derived estimates of land surface temperature (LST) and soil moisture to estimate soil respiration in temperate deciduous and coniferous forests in Canada. The models were calibrated using in-situ soil temperature and moisture and validated against in-situ measurements of soil CO2 fluxes (gCm−2day−1) from automatic soil chambers. We separately evaluate the performance of nighttime and daytime satellite-based LST and soil moisture observations in modeling soil respiration. The soil respiration models were also evaluated at daily and monthly time scales against in-situ measurements. Results indicate that models based on satellite LST, and soil moisture can explain more than 70% of the variability in observed soil respiration. Nighttime LST at a monthly time scale resulted in consistently higher accuracy than daytime LST in estimating soil respiration. Satellite observations resulted in comparable accuracy in estimating soil respiration as in-situ measurements. Satellite LST and soil moisture observations are indispensable data sources to estimate soil respiration at ecosystem level and its upscaling to regional and global scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YEGE完成签到 ,获得积分10
2秒前
3秒前
4秒前
英姑应助细心谷蓝采纳,获得10
4秒前
Nothing完成签到,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
Geass发布了新的文献求助10
10秒前
Akim应助搞怪的寄灵采纳,获得10
10秒前
小明发布了新的文献求助10
10秒前
杨洋发布了新的文献求助10
10秒前
科研通AI6应助怡然之云采纳,获得10
15秒前
BORN关注了科研通微信公众号
16秒前
悲伤西米露完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
17秒前
Passskd发布了新的文献求助10
19秒前
推土机爱学习完成签到 ,获得积分10
19秒前
susan完成签到,获得积分10
20秒前
香蕉觅云应助天才玩家采纳,获得10
23秒前
shihun发布了新的文献求助10
23秒前
交交阿鱼完成签到,获得积分10
24秒前
望舒完成签到,获得积分10
25秒前
潮平两岸阔完成签到,获得积分10
25秒前
活泼醉冬完成签到,获得积分10
25秒前
26秒前
tartyang完成签到 ,获得积分10
28秒前
杨洋完成签到,获得积分10
28秒前
情怀应助gzk采纳,获得10
29秒前
saluo发布了新的文献求助10
30秒前
我是老大应助淡淡采纳,获得10
32秒前
糖豆子完成签到,获得积分10
34秒前
LHT完成签到,获得积分10
34秒前
刘一帆发布了新的文献求助10
34秒前
量子星尘发布了新的文献求助10
35秒前
李健的小迷弟应助z620采纳,获得10
37秒前
37秒前
zhang03完成签到 ,获得积分10
38秒前
小明完成签到,获得积分10
38秒前
Ander完成签到 ,获得积分10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679587
求助须知:如何正确求助?哪些是违规求助? 4991903
关于积分的说明 15170108
捐赠科研通 4839414
什么是DOI,文献DOI怎么找? 2593318
邀请新用户注册赠送积分活动 1546447
关于科研通互助平台的介绍 1504572