亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Satellite-based land surface temperature and soil moisture observations accurately predict soil respiration in temperate deciduous and coniferous forests

每年落叶的 环境科学 温带落叶林 含水量 土壤呼吸 温带气候 温带森林 卫星 大气科学 水文学(农业) 土壤科学 土壤水分 生态学 地质学 工程类 航空航天工程 生物 岩土工程
作者
Lelia Weiland,Cheryl Rogers,Camile Sothe,M. Altaf Arain,Alemu Gonsamo
出处
期刊:Agricultural and Forest Meteorology [Elsevier]
卷期号:340: 109618-109618 被引量:1
标识
DOI:10.1016/j.agrformet.2023.109618
摘要

Soil respiration, defined as the total flux of carbon dioxide (CO2) from the soil to the atmosphere, is a key ecosystem process that affects the regional and global carbon (C) cycles and is highly sensitive to temperature and soil moisture. It is challenging to quantify soil respiration at the ecosystem level from commonly used in-situ soil chamber measurements because of large spatial variability. Methods that provide temporally and spatially continuous estimates of soil respiration at various scales are vital to understand the impact of climate change on soil C stock. In this study, we evaluate three commonly used empirical models and a Random Forest machine learning algorithm applied to satellite derived estimates of land surface temperature (LST) and soil moisture to estimate soil respiration in temperate deciduous and coniferous forests in Canada. The models were calibrated using in-situ soil temperature and moisture and validated against in-situ measurements of soil CO2 fluxes (gCm−2day−1) from automatic soil chambers. We separately evaluate the performance of nighttime and daytime satellite-based LST and soil moisture observations in modeling soil respiration. The soil respiration models were also evaluated at daily and monthly time scales against in-situ measurements. Results indicate that models based on satellite LST, and soil moisture can explain more than 70% of the variability in observed soil respiration. Nighttime LST at a monthly time scale resulted in consistently higher accuracy than daytime LST in estimating soil respiration. Satellite observations resulted in comparable accuracy in estimating soil respiration as in-situ measurements. Satellite LST and soil moisture observations are indispensable data sources to estimate soil respiration at ecosystem level and its upscaling to regional and global scales.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小萌兽完成签到 ,获得积分10
24秒前
ysy完成签到,获得积分10
28秒前
58秒前
1分钟前
1分钟前
直率的青寒完成签到,获得积分10
1分钟前
宝石完成签到,获得积分10
2分钟前
null应助ceeray23采纳,获得20
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
羞涩的傲菡完成签到,获得积分10
3分钟前
3分钟前
nssanc完成签到,获得积分10
3分钟前
linlinlin发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
FashionBoy应助linlinlin采纳,获得10
3分钟前
十一完成签到 ,获得积分10
4分钟前
QQWRV完成签到,获得积分10
4分钟前
4分钟前
CC发布了新的文献求助10
5分钟前
ceeray23发布了新的文献求助20
5分钟前
威武千青发布了新的文献求助20
5分钟前
5分钟前
Mrzrgh完成签到,获得积分10
6分钟前
钱邦国完成签到 ,获得积分10
6分钟前
小乐儿~完成签到,获得积分10
6分钟前
闪闪关注了科研通微信公众号
7分钟前
科研通AI6应助和谐小鸭子采纳,获得10
7分钟前
7分钟前
7分钟前
7分钟前
袁青寒完成签到,获得积分10
7分钟前
keke发布了新的文献求助10
7分钟前
7分钟前
陈开发布了新的文献求助10
7分钟前
ceeray23发布了新的文献求助20
8分钟前
星之所在应助ceeray23采纳,获得20
8分钟前
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5622233
求助须知:如何正确求助?哪些是违规求助? 4707262
关于积分的说明 14938986
捐赠科研通 4769501
什么是DOI,文献DOI怎么找? 2552232
邀请新用户注册赠送积分活动 1514348
关于科研通互助平台的介绍 1475041