已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Satellite-based land surface temperature and soil moisture observations accurately predict soil respiration in temperate deciduous and coniferous forests

每年落叶的 环境科学 温带落叶林 含水量 土壤呼吸 温带气候 温带森林 卫星 大气科学 水文学(农业) 土壤科学 土壤水分 生态学 地质学 岩土工程 工程类 航空航天工程 生物
作者
Lelia Weiland,Cheryl Rogers,Camile Sothe,M. Altaf Arain,Alemu Gonsamo
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:340: 109618-109618 被引量:1
标识
DOI:10.1016/j.agrformet.2023.109618
摘要

Soil respiration, defined as the total flux of carbon dioxide (CO2) from the soil to the atmosphere, is a key ecosystem process that affects the regional and global carbon (C) cycles and is highly sensitive to temperature and soil moisture. It is challenging to quantify soil respiration at the ecosystem level from commonly used in-situ soil chamber measurements because of large spatial variability. Methods that provide temporally and spatially continuous estimates of soil respiration at various scales are vital to understand the impact of climate change on soil C stock. In this study, we evaluate three commonly used empirical models and a Random Forest machine learning algorithm applied to satellite derived estimates of land surface temperature (LST) and soil moisture to estimate soil respiration in temperate deciduous and coniferous forests in Canada. The models were calibrated using in-situ soil temperature and moisture and validated against in-situ measurements of soil CO2 fluxes (gCm−2day−1) from automatic soil chambers. We separately evaluate the performance of nighttime and daytime satellite-based LST and soil moisture observations in modeling soil respiration. The soil respiration models were also evaluated at daily and monthly time scales against in-situ measurements. Results indicate that models based on satellite LST, and soil moisture can explain more than 70% of the variability in observed soil respiration. Nighttime LST at a monthly time scale resulted in consistently higher accuracy than daytime LST in estimating soil respiration. Satellite observations resulted in comparable accuracy in estimating soil respiration as in-situ measurements. Satellite LST and soil moisture observations are indispensable data sources to estimate soil respiration at ecosystem level and its upscaling to regional and global scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
外向怜晴完成签到,获得积分20
1秒前
3秒前
oleskarabach完成签到,获得积分20
4秒前
Hubert发布了新的文献求助10
4秒前
李爱国应助eeeee采纳,获得10
6秒前
LukeLion发布了新的文献求助10
8秒前
外向怜晴发布了新的文献求助10
9秒前
William_l_c完成签到,获得积分10
11秒前
11秒前
12秒前
肖易应助Hanzoe采纳,获得10
12秒前
LukeLion完成签到,获得积分10
13秒前
Hubert完成签到,获得积分10
15秒前
科研通AI6应助薄荷味汽水采纳,获得10
15秒前
Runjin_Hu完成签到,获得积分10
15秒前
科目三应助JJY丶L采纳,获得30
15秒前
Spice完成签到 ,获得积分10
16秒前
17秒前
水菜泽子完成签到,获得积分10
17秒前
eeeee发布了新的文献求助10
18秒前
脑洞疼应助水菜泽子采纳,获得10
22秒前
27秒前
28秒前
赘婿应助独特的咩咩采纳,获得10
30秒前
30秒前
JJY丶L发布了新的文献求助30
31秒前
32秒前
33秒前
英姑应助柔弱蜜粉采纳,获得10
34秒前
卡卡发布了新的文献求助10
36秒前
38秒前
39秒前
111完成签到 ,获得积分10
40秒前
小洁完成签到 ,获得积分10
44秒前
45秒前
斯文败类应助lanrete采纳,获得10
47秒前
48秒前
51秒前
小蘑菇应助薄荷味汽水采纳,获得10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610454
求助须知:如何正确求助?哪些是违规求助? 4016392
关于积分的说明 12435104
捐赠科研通 3697960
什么是DOI,文献DOI怎么找? 2039151
邀请新用户注册赠送积分活动 1072032
科研通“疑难数据库(出版商)”最低求助积分说明 955685