Satellite-based land surface temperature and soil moisture observations accurately predict soil respiration in temperate deciduous and coniferous forests

每年落叶的 环境科学 温带落叶林 含水量 土壤呼吸 温带气候 温带森林 卫星 大气科学 水文学(农业) 土壤科学 土壤水分 生态学 地质学 岩土工程 工程类 航空航天工程 生物
作者
Lelia Weiland,Cheryl Rogers,Camile Sothe,M. Altaf Arain,Alemu Gonsamo
出处
期刊:Agricultural and Forest Meteorology [Elsevier BV]
卷期号:340: 109618-109618 被引量:1
标识
DOI:10.1016/j.agrformet.2023.109618
摘要

Soil respiration, defined as the total flux of carbon dioxide (CO2) from the soil to the atmosphere, is a key ecosystem process that affects the regional and global carbon (C) cycles and is highly sensitive to temperature and soil moisture. It is challenging to quantify soil respiration at the ecosystem level from commonly used in-situ soil chamber measurements because of large spatial variability. Methods that provide temporally and spatially continuous estimates of soil respiration at various scales are vital to understand the impact of climate change on soil C stock. In this study, we evaluate three commonly used empirical models and a Random Forest machine learning algorithm applied to satellite derived estimates of land surface temperature (LST) and soil moisture to estimate soil respiration in temperate deciduous and coniferous forests in Canada. The models were calibrated using in-situ soil temperature and moisture and validated against in-situ measurements of soil CO2 fluxes (gCm−2day−1) from automatic soil chambers. We separately evaluate the performance of nighttime and daytime satellite-based LST and soil moisture observations in modeling soil respiration. The soil respiration models were also evaluated at daily and monthly time scales against in-situ measurements. Results indicate that models based on satellite LST, and soil moisture can explain more than 70% of the variability in observed soil respiration. Nighttime LST at a monthly time scale resulted in consistently higher accuracy than daytime LST in estimating soil respiration. Satellite observations resulted in comparable accuracy in estimating soil respiration as in-situ measurements. Satellite LST and soil moisture observations are indispensable data sources to estimate soil respiration at ecosystem level and its upscaling to regional and global scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
bkagyin应助Gwen采纳,获得20
1秒前
LEMONS应助YQT采纳,获得10
1秒前
wanci应助Mine采纳,获得10
1秒前
2秒前
2秒前
wanci应助ihtw采纳,获得10
2秒前
gy发布了新的文献求助10
2秒前
3秒前
木子刈发布了新的文献求助10
3秒前
3秒前
4秒前
静静等待发布了新的文献求助10
4秒前
4秒前
5秒前
共享精神应助宫雨晴采纳,获得10
5秒前
PPP完成签到,获得积分10
5秒前
YEYE发布了新的文献求助10
6秒前
田様应助gy采纳,获得10
6秒前
樱偶猫完成签到 ,获得积分10
7秒前
胡强完成签到,获得积分10
7秒前
在水一方应助liling采纳,获得30
7秒前
Garfieldlilac发布了新的文献求助10
8秒前
8秒前
Mannose发布了新的文献求助10
8秒前
Ethan发布了新的文献求助10
8秒前
Pretrial完成签到 ,获得积分10
8秒前
9秒前
贝塔发布了新的文献求助10
9秒前
高兴小熊猫完成签到,获得积分10
9秒前
Hzz完成签到,获得积分10
10秒前
胡强发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
Akim应助liuzengzhang666采纳,获得10
10秒前
11秒前
小梁发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500172
关于积分的说明 11098313
捐赠科研通 3230649
什么是DOI,文献DOI怎么找? 1786063
邀请新用户注册赠送积分活动 869805
科研通“疑难数据库(出版商)”最低求助积分说明 801609