Deep Graph Reinforcement Learning for Solving Multicut Problem

强化学习 图形 计算机科学 钢筋 人工智能 心理学 理论计算机科学 社会心理学
作者
Zhenchen Li,Xu Yang,Yanchao Zhang,Shaofeng Zeng,Jingbin Yuan,Jiazheng Liu,Zhiyong Liu,Hua Han
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3443413
摘要

The multicut problem, also known as correlation clustering, is a classic combinatorial optimization problem that aims to optimize graph partitioning given only node (dis)similarities on edges. It serves as an elegant generalization for several graph partitioning problems and has found successful applications in various areas such as data mining and computer vision. However, the multicut problem with an exponentially large number of cycle constraints proves to be NP-hard, and existing solvers either suffer from exponential complexity or often give unsatisfactory solutions due to inflexible heuristics driven by hand-designed mechanisms. In this article, we propose a deep graph reinforcement learning method to solve the multicut problem within a combinatorial decision framework involving sequential edge contractions. The customized subgraph neural network adapts to the dynamically edge-contracted graph environment by extracting bilevel connected features from both contracted and original graphs. Our method can learn to infer feasible multicut solutions end-to-end toward optimization of the multicut objective in a data-driven manner. More specifically, by exploring the decision space adaptively, it implicitly gains heuristic knowledge from topological patterns of instances and thereby generates more targeted heuristics overcoming the short-sightedness inherent in the hand-designed ones. During testing, the learned heuristics iteratively contract graphs to construct high-quality solutions within polynomial time. Extensive experiments on synthetic and real-world multicut instances show the superiority of our method over existing combinatorial solvers, while also maintaining a certain level of out-of-distribution generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fabian完成签到,获得积分10
1秒前
九月完成签到,获得积分10
1秒前
pufanlg完成签到,获得积分10
1秒前
chhzz完成签到 ,获得积分10
2秒前
清爽的水蓝完成签到 ,获得积分10
2秒前
2秒前
一氧化二氢完成签到,获得积分10
3秒前
3秒前
Salut发布了新的文献求助10
3秒前
4秒前
5秒前
wy0409完成签到,获得积分10
5秒前
清秀苗条完成签到,获得积分10
6秒前
9秒前
安鹏发布了新的文献求助10
10秒前
111111发布了新的文献求助10
10秒前
友好的小翠完成签到,获得积分10
10秒前
迅速凝竹完成签到 ,获得积分10
10秒前
XCYIN完成签到,获得积分10
10秒前
gulin发布了新的文献求助10
11秒前
Daisy完成签到,获得积分10
11秒前
天天快乐应助犹豫的若采纳,获得10
12秒前
菠萝仔完成签到,获得积分10
12秒前
12秒前
谢谢谢谢谢谢谢谢完成签到 ,获得积分10
12秒前
陈成完成签到,获得积分10
14秒前
14秒前
安安的小板栗完成签到,获得积分10
15秒前
yao完成签到 ,获得积分10
15秒前
发个15分的完成签到 ,获得积分10
15秒前
何止完成签到,获得积分10
15秒前
L1完成签到,获得积分10
16秒前
16秒前
chuxin完成签到,获得积分10
16秒前
清修发布了新的文献求助10
16秒前
小纪应助Slence采纳,获得10
17秒前
陈宗琴完成签到,获得积分10
18秒前
碎冰蓝完成签到,获得积分10
18秒前
加油冲完成签到,获得积分10
20秒前
lxy94614完成签到,获得积分20
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347799
求助须知:如何正确求助?哪些是违规求助? 4482040
关于积分的说明 13948663
捐赠科研通 4380425
什么是DOI,文献DOI怎么找? 2406961
邀请新用户注册赠送积分活动 1399538
关于科研通互助平台的介绍 1372763