Deep Graph Reinforcement Learning for Solving Multicut Problem

强化学习 图形 计算机科学 钢筋 人工智能 心理学 理论计算机科学 社会心理学
作者
Zhenchen Li,Xu Yang,Yanchao Zhang,Shaofeng Zeng,Jingbin Yuan,Jiazheng Liu,Zhiyong Liu,Hua Han
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3443413
摘要

The multicut problem, also known as correlation clustering, is a classic combinatorial optimization problem that aims to optimize graph partitioning given only node (dis)similarities on edges. It serves as an elegant generalization for several graph partitioning problems and has found successful applications in various areas such as data mining and computer vision. However, the multicut problem with an exponentially large number of cycle constraints proves to be NP-hard, and existing solvers either suffer from exponential complexity or often give unsatisfactory solutions due to inflexible heuristics driven by hand-designed mechanisms. In this article, we propose a deep graph reinforcement learning method to solve the multicut problem within a combinatorial decision framework involving sequential edge contractions. The customized subgraph neural network adapts to the dynamically edge-contracted graph environment by extracting bilevel connected features from both contracted and original graphs. Our method can learn to infer feasible multicut solutions end-to-end toward optimization of the multicut objective in a data-driven manner. More specifically, by exploring the decision space adaptively, it implicitly gains heuristic knowledge from topological patterns of instances and thereby generates more targeted heuristics overcoming the short-sightedness inherent in the hand-designed ones. During testing, the learned heuristics iteratively contract graphs to construct high-quality solutions within polynomial time. Extensive experiments on synthetic and real-world multicut instances show the superiority of our method over existing combinatorial solvers, while also maintaining a certain level of out-of-distribution generalization ability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助30
1秒前
桔子发布了新的文献求助20
1秒前
科研通AI6应助积极的雪莲采纳,获得10
1秒前
you完成签到,获得积分10
1秒前
敏感草丛完成签到,获得积分10
2秒前
2秒前
shirley完成签到,获得积分10
2秒前
2秒前
狂野的明杰完成签到,获得积分10
3秒前
卡卡完成签到 ,获得积分10
3秒前
4秒前
汪汪淬冰冰完成签到,获得积分10
7秒前
Fannie完成签到,获得积分10
7秒前
Yangaaa完成签到 ,获得积分10
8秒前
风雨1210发布了新的文献求助10
8秒前
所所应助dangan采纳,获得10
8秒前
积极的雪莲完成签到,获得积分10
9秒前
9秒前
希望天下0贩的0应助geed809采纳,获得10
9秒前
9秒前
李健的小迷弟应助jiabaoyu采纳,获得10
10秒前
10秒前
受伤自行车完成签到,获得积分10
10秒前
典雅的人生应助单身的紊采纳,获得10
11秒前
fai完成签到,获得积分10
11秒前
Jasper应助ZeyiWang采纳,获得10
11秒前
Don发布了新的文献求助10
12秒前
12秒前
13秒前
Destiny完成签到,获得积分10
13秒前
dangan完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
高雨晴发布了新的文献求助30
14秒前
15秒前
junzpeng发布了新的文献求助10
15秒前
16秒前
MISSIW完成签到,获得积分10
16秒前
16秒前
在水一方应助yybb2012采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728563
求助须知:如何正确求助?哪些是违规求助? 5313670
关于积分的说明 15314683
捐赠科研通 4875796
什么是DOI,文献DOI怎么找? 2618967
邀请新用户注册赠送积分活动 1568573
关于科研通互助平台的介绍 1525175