Deep Graph Reinforcement Learning for Solving Multicut Problem

强化学习 图形 计算机科学 钢筋 人工智能 心理学 理论计算机科学 社会心理学
作者
Zhenchen Li,Xu Yang,Yanchao Zhang,Shaofeng Zeng,Jingbin Yuan,Jiazheng Liu,Zhiyong Liu,Hua Han
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3443413
摘要

The multicut problem, also known as correlation clustering, is a classic combinatorial optimization problem that aims to optimize graph partitioning given only node (dis)similarities on edges. It serves as an elegant generalization for several graph partitioning problems and has found successful applications in various areas such as data mining and computer vision. However, the multicut problem with an exponentially large number of cycle constraints proves to be NP-hard, and existing solvers either suffer from exponential complexity or often give unsatisfactory solutions due to inflexible heuristics driven by hand-designed mechanisms. In this article, we propose a deep graph reinforcement learning method to solve the multicut problem within a combinatorial decision framework involving sequential edge contractions. The customized subgraph neural network adapts to the dynamically edge-contracted graph environment by extracting bilevel connected features from both contracted and original graphs. Our method can learn to infer feasible multicut solutions end-to-end toward optimization of the multicut objective in a data-driven manner. More specifically, by exploring the decision space adaptively, it implicitly gains heuristic knowledge from topological patterns of instances and thereby generates more targeted heuristics overcoming the short-sightedness inherent in the hand-designed ones. During testing, the learned heuristics iteratively contract graphs to construct high-quality solutions within polynomial time. Extensive experiments on synthetic and real-world multicut instances show the superiority of our method over existing combinatorial solvers, while also maintaining a certain level of out-of-distribution generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sigyn完成签到,获得积分10
刚刚
顺利琦发布了新的文献求助10
刚刚
刚刚
自由完成签到,获得积分20
1秒前
Volta_zz完成签到,获得积分10
1秒前
1秒前
欣欣子完成签到,获得积分10
2秒前
3秒前
111完成签到 ,获得积分10
3秒前
3秒前
柔弱煎饼发布了新的文献求助30
4秒前
4秒前
曹梦梦完成签到,获得积分10
4秒前
4秒前
风趣霆完成签到,获得积分10
5秒前
5秒前
5秒前
小二郎应助Sigyn采纳,获得10
5秒前
科研通AI5应助不对也没错采纳,获得10
5秒前
lyn完成签到,获得积分20
5秒前
6秒前
隐形觅翠完成签到,获得积分10
6秒前
刘鹏宇发布了新的文献求助10
6秒前
lizh187完成签到 ,获得积分10
6秒前
北城完成签到,获得积分10
6秒前
自由发布了新的文献求助10
7秒前
7秒前
小豆芽儿发布了新的文献求助10
7秒前
WNL发布了新的文献求助10
8秒前
Ngu完成签到,获得积分10
8秒前
科研通AI5应助冷艳后妈采纳,获得10
8秒前
陶1122发布了新的文献求助10
8秒前
万能图书馆应助乐观期待采纳,获得30
8秒前
krystal完成签到,获得积分10
8秒前
学术大小拿完成签到,获得积分10
9秒前
迪迦完成签到,获得积分10
9秒前
10秒前
乖乖发布了新的文献求助10
10秒前
10秒前
song24517发布了新的文献求助20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678