Deep Graph Reinforcement Learning for Solving Multicut Problem

强化学习 图形 计算机科学 钢筋 人工智能 心理学 理论计算机科学 社会心理学
作者
Zhenchen Li,Xu Yang,Yanchao Zhang,Shaofeng Zeng,Jingbin Yuan,Jiazheng Liu,Zhiyong Liu,Hua Han
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3443413
摘要

The multicut problem, also known as correlation clustering, is a classic combinatorial optimization problem that aims to optimize graph partitioning given only node (dis)similarities on edges. It serves as an elegant generalization for several graph partitioning problems and has found successful applications in various areas such as data mining and computer vision. However, the multicut problem with an exponentially large number of cycle constraints proves to be NP-hard, and existing solvers either suffer from exponential complexity or often give unsatisfactory solutions due to inflexible heuristics driven by hand-designed mechanisms. In this article, we propose a deep graph reinforcement learning method to solve the multicut problem within a combinatorial decision framework involving sequential edge contractions. The customized subgraph neural network adapts to the dynamically edge-contracted graph environment by extracting bilevel connected features from both contracted and original graphs. Our method can learn to infer feasible multicut solutions end-to-end toward optimization of the multicut objective in a data-driven manner. More specifically, by exploring the decision space adaptively, it implicitly gains heuristic knowledge from topological patterns of instances and thereby generates more targeted heuristics overcoming the short-sightedness inherent in the hand-designed ones. During testing, the learned heuristics iteratively contract graphs to construct high-quality solutions within polynomial time. Extensive experiments on synthetic and real-world multicut instances show the superiority of our method over existing combinatorial solvers, while also maintaining a certain level of out-of-distribution generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYUE发布了新的文献求助10
2秒前
扬帆起航发布了新的文献求助10
3秒前
蜜桃小丸子完成签到 ,获得积分10
5秒前
传奇3应助yang采纳,获得10
6秒前
兮兮完成签到,获得积分10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
yar应助科研通管家采纳,获得10
8秒前
yohu应助科研通管家采纳,获得10
8秒前
orixero应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
yar应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
11秒前
喵小薇完成签到,获得积分20
11秒前
11秒前
13秒前
铲铲完成签到,获得积分10
13秒前
14秒前
pluto应助优美飞薇采纳,获得30
14秒前
玛格丽特完成签到,获得积分20
15秒前
迅速如柏完成签到,获得积分20
15秒前
酷波er应助momo采纳,获得10
15秒前
优雅的箴发布了新的文献求助10
17秒前
18秒前
DLY677完成签到,获得积分10
20秒前
wangtingyu发布了新的文献求助10
21秒前
迅速如柏发布了新的文献求助10
21秒前
儒雅的香之完成签到,获得积分10
22秒前
22秒前
Siney发布了新的文献求助10
24秒前
albertchan完成签到,获得积分10
24秒前
yang发布了新的文献求助10
24秒前
斯文败类应助玛格丽特采纳,获得10
24秒前
Benhnhk21完成签到,获得积分10
25秒前
格格巫完成签到 ,获得积分10
26秒前
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 510
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312179
求助须知:如何正确求助?哪些是违规求助? 2944769
关于积分的说明 8521402
捐赠科研通 2620485
什么是DOI,文献DOI怎么找? 1432870
科研通“疑难数据库(出版商)”最低求助积分说明 664797
邀请新用户注册赠送积分活动 650115