Deep Graph Reinforcement Learning for Solving Multicut Problem

强化学习 图形 计算机科学 钢筋 人工智能 心理学 理论计算机科学 社会心理学
作者
Zhenchen Li,Xu Yang,Yanchao Zhang,Shaofeng Zeng,Jingbin Yuan,Jiazheng Liu,Zhiyong Liu,Hua Han
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3443413
摘要

The multicut problem, also known as correlation clustering, is a classic combinatorial optimization problem that aims to optimize graph partitioning given only node (dis)similarities on edges. It serves as an elegant generalization for several graph partitioning problems and has found successful applications in various areas such as data mining and computer vision. However, the multicut problem with an exponentially large number of cycle constraints proves to be NP-hard, and existing solvers either suffer from exponential complexity or often give unsatisfactory solutions due to inflexible heuristics driven by hand-designed mechanisms. In this article, we propose a deep graph reinforcement learning method to solve the multicut problem within a combinatorial decision framework involving sequential edge contractions. The customized subgraph neural network adapts to the dynamically edge-contracted graph environment by extracting bilevel connected features from both contracted and original graphs. Our method can learn to infer feasible multicut solutions end-to-end toward optimization of the multicut objective in a data-driven manner. More specifically, by exploring the decision space adaptively, it implicitly gains heuristic knowledge from topological patterns of instances and thereby generates more targeted heuristics overcoming the short-sightedness inherent in the hand-designed ones. During testing, the learned heuristics iteratively contract graphs to construct high-quality solutions within polynomial time. Extensive experiments on synthetic and real-world multicut instances show the superiority of our method over existing combinatorial solvers, while also maintaining a certain level of out-of-distribution generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助DRHSK采纳,获得10
刚刚
WANGJD发布了新的文献求助10
1秒前
1秒前
露露露完成签到,获得积分10
1秒前
2秒前
小黑子fanfan完成签到,获得积分10
2秒前
小二郎应助dyd采纳,获得10
2秒前
玲玲完成签到,获得积分10
3秒前
TTYYI完成签到 ,获得积分10
3秒前
122319完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
song发布了新的文献求助10
3秒前
Maestro_S应助jyyg采纳,获得10
3秒前
4秒前
asd_1发布了新的文献求助10
5秒前
单纯板栗发布了新的文献求助10
7秒前
浮游应助Raye采纳,获得10
7秒前
波波完成签到,获得积分10
7秒前
7秒前
夜尽天明应助琪哒采纳,获得10
7秒前
8秒前
8秒前
咸鱼发布了新的文献求助10
8秒前
8秒前
善学以致用应助WANGJD采纳,获得10
9秒前
PigaChu发布了新的文献求助10
9秒前
Haries完成签到,获得积分10
9秒前
tlc_191026完成签到,获得积分10
9秒前
小伍同学完成签到,获得积分10
10秒前
伊雪儿完成签到,获得积分10
10秒前
科研通AI2S应助077采纳,获得10
11秒前
杨知意完成签到,获得积分10
11秒前
nightmoonsun发布了新的文献求助10
12秒前
柚子发布了新的文献求助10
13秒前
13秒前
13秒前
在水一方应助吴帆采纳,获得10
14秒前
高分子物理不会完成签到,获得积分10
14秒前
Jessica完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426