Plasma proteomics for risk prediction of Alzheimer's disease in the general population

载脂蛋白E 生命银行 队列 弗雷明翰风险评分 痴呆 阿尔茨海默病 内科学 队列研究 生物 人口 疾病 医学 生物信息学 环境卫生
作者
Sisi Yang,Ziliang Ye,Panpan He,Yuanyuan Zhang,Mengyi Liu,Chun Zhou,Yanjun Zhang,Xiaoqin Gan,Yu Huang,Hao Xiang,Xianhui Qin
出处
期刊:Aging Cell [Wiley]
标识
DOI:10.1111/acel.14330
摘要

Abstract We aimed to develop and validate a protein risk score for predicting Alzheimer's disease (AD) and compare its performance with a validated clinical risk model (Cognitive Health and Dementia Risk Index for AD [CogDrisk‐AD]) and apolipoprotein E (APOE) genotypes. The development cohort, consisting of 35,547 participants from England in the UK Biobank, was randomly divided into a 7:3 training–testing ratio. The validation cohort included 4667 participants from Scotland and Wales in the UK Biobank. In the training set, an AD protein risk score was constructed using 31 proteins out of 2911 proteins. In the testing set, the AD protein risk score had a C‐index of 0.867 (95% CI, 0.828, 0.906) for AD prediction, followed by CogDrisk‐AD risk factors (C‐index, 0.856; 95% CI, 0.823, 0.889), and APOE genotypes (C‐index, 0.705; 95% CI, 0.660, 0.750). Adding the AD protein risk score to CogDrisk‐AD risk factors (C‐index increase, 0.050; 95% CI, 0.008, 0.093) significantly improved the predictive performance for AD. However, adding CogDrisk‐AD risk factors (C‐index increase, 0.040; 95% CI, −0.007, 0.086) or APOE genotypes (C‐index increase, 0.000; 95% CI, −0.054, 0.055) to the AD protein risk score did not significantly improve the predictive performance for AD. The top 10 proteins with the highest coefficients in the AD protein risk score contributed most of the predictive power for AD risk. These results were verified in the external validation cohort. EGFR, GFAP, and CHGA were identified as key proteins within the protein network. Our result suggests that the AD protein risk score demonstrated a good predictive performance for AD risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lu完成签到,获得积分10
刚刚
张楠完成签到 ,获得积分10
7秒前
9秒前
15秒前
chenkj完成签到,获得积分10
17秒前
1250241652完成签到,获得积分10
17秒前
EricSai完成签到,获得积分10
17秒前
ikun完成签到,获得积分10
17秒前
18秒前
Arthur完成签到 ,获得积分10
20秒前
丽丽完成签到 ,获得积分10
22秒前
哈哈哈哈完成签到 ,获得积分10
22秒前
wyn完成签到,获得积分10
24秒前
339564965完成签到,获得积分10
26秒前
Catherine完成签到,获得积分10
26秒前
Helios完成签到,获得积分10
27秒前
ccc完成签到,获得积分10
27秒前
风信子完成签到,获得积分10
28秒前
只想顺利毕业的科研狗完成签到,获得积分10
29秒前
风中的老九完成签到,获得积分10
29秒前
xueshidaheng完成签到,获得积分10
30秒前
Brief完成签到,获得积分10
31秒前
nanostu完成签到,获得积分10
32秒前
鹏举瞰冷雨完成签到,获得积分10
32秒前
Jason完成签到 ,获得积分10
33秒前
皇帝的床帘完成签到,获得积分10
37秒前
00完成签到 ,获得积分10
38秒前
啥时候能早睡完成签到 ,获得积分10
42秒前
小不完成签到 ,获得积分10
46秒前
51秒前
迷人尔蓝关注了科研通微信公众号
53秒前
53秒前
缥缈映安发布了新的文献求助10
56秒前
terryok完成签到,获得积分10
1分钟前
旅顺口老李完成签到 ,获得积分10
1分钟前
糊涂的青烟完成签到 ,获得积分10
1分钟前
1分钟前
lizef完成签到 ,获得积分10
1分钟前
Zhiyang Lu完成签到,获得积分10
1分钟前
1111chen完成签到 ,获得积分10
1分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139656
求助须知:如何正确求助?哪些是违规求助? 2790535
关于积分的说明 7795568
捐赠科研通 2446980
什么是DOI,文献DOI怎么找? 1301543
科研通“疑难数据库(出版商)”最低求助积分说明 626264
版权声明 601176