Essential Considerations for Free Energy Calculations of RNA-Small Molecule Complexes: Lessons from Theophylline-Binding RNA Aptamer

核糖核酸 适体 化学 生物信息学 能源景观 计算生物学 生物系统 生物物理学 计算机科学 生物化学 生物 遗传学 基因
作者
Ali Rasouli,Frank C. Pickard,Sreyoshi Sur,Alan Grossfield,Mehtap Işık
标识
DOI:10.1101/2024.08.16.608304
摘要

Alchemical free energy calculations are widely used to predict the binding affinity of small molecule ligands to protein targets; however, the application of these methods to RNA targets has not been deeply explored. We systematically investigated how modeling decisions affect the performance of absolute binding free energy calculations for a relatively simple RNA model system: theophylline-binding RNA aptamer with theophylline and five analogs. The goal of this investigation was twofold: (1) understanding the performance levels we can expect from absolute free energy calculations for a simple RNA complex and (2) learning about practical modeling considerations that impact the success of RNA binding predictions, which may be different than the best practices established for protein targets. We learned that magnesium ion (Mg 2+ ) placement is a critical decision that impacts affinity predictions. When information regarding Mg 2+ positions is lacking, implementing RNA backbone restraints is an alternative way of stabilizing RNA structure that recapitulates prediction accuracy. Since mistakes in Mg 2+ placement can be detrimental, omitting magnesium ions entirely and using RNA backbone restraints is attractive as a risk-mitigating approach. We found that predictions are sensitive to modeling experimental buffer conditions correctly, including salt type and ionic strength. We explored the effects of sampling in the alchemical protocol, choice of the ligand force field (GAFF2/OpenFF Sage), and water model (TIP3P/OPC) on predictions, which allowed us to give practical advice for the application of free energy methods to RNA targets. By capturing experimental buffer conditions and implementing RNA backbone restraints, we were able to compute binding affinities accurately (MAE = 2.2 kcal/mol, Pearson's correlation coefficient = 0.9, Kendall's tau = 0.7). We believe there is much to learn about how to apply free energy calculations for RNA targets and how to enhance their performance in prospective predictions. This study is an important first step for learning best practices and special considerations for RNA-ligand free energy calculations. Future studies will consider increasingly complicated ligands and diverse RNA systems and help the development of general protocols for therapeutically relevant RNA targets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
cc完成签到,获得积分20
2秒前
3秒前
3秒前
背后翠梅完成签到,获得积分10
3秒前
3秒前
涛涛发布了新的文献求助10
3秒前
lan完成签到,获得积分10
3秒前
皮皮完成签到 ,获得积分10
4秒前
ChiDaiOLD完成签到,获得积分10
4秒前
4秒前
情怀应助顺顺采纳,获得10
4秒前
Fundamental发布了新的文献求助10
6秒前
咩咩发布了新的文献求助10
6秒前
kingmin应助金鸡奖采纳,获得10
6秒前
喜悦蚂蚁完成签到,获得积分10
7秒前
赘婿应助拼搏向前采纳,获得10
7秒前
7秒前
7秒前
路十三完成签到 ,获得积分10
8秒前
Lucas应助Sophia采纳,获得10
9秒前
lan发布了新的文献求助10
9秒前
金容发布了新的文献求助10
9秒前
京阿尼发布了新的文献求助10
10秒前
好久不见发布了新的文献求助10
10秒前
小二郎应助轩辕德地采纳,获得10
10秒前
超级的飞飞完成签到,获得积分10
13秒前
14秒前
14秒前
金容完成签到,获得积分10
15秒前
细雨听风完成签到,获得积分10
15秒前
含糊的白安完成签到,获得积分10
16秒前
迟大猫应助xzn1123采纳,获得30
17秒前
17秒前
17秒前
科研通AI5应助李李采纳,获得50
18秒前
祖f完成签到,获得积分10
18秒前
阿莫西林胶囊完成签到,获得积分10
19秒前
jason完成签到,获得积分10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808