清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Vehicle door frame positioning method for binocular vision robots based on improved YOLOv4

计算机科学 人工智能 计算机视觉 帧(网络) 过程(计算) 特征(语言学) 棱锥(几何) 机器人 卷积神经网络 职位(财务) 帧速率 电信 哲学 语言学 财务 经济 操作系统 物理 光学
作者
Limei Song,Yulin Wang,Yangang Yang,Xinjun Zhu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (6): 065005-065005 被引量:1
标识
DOI:10.1088/1361-6501/acbd21
摘要

Abstract In the task of using robots to capture end-of-life cars, the position of the vehicle door frame needs to be grasped. A fast and accurate positioning of the vehicle door frame is the key to realizing the automatic car grasping process. Traditional methods for locating and grasping scrap cars rely heavily on manual operations and suffer from low grasping efficiency and poor accuracy. Therefore, this paper proposes a binocular vision robot vehicle door frame spatial localization method based on the improved YOLOv4. This method includes a lightweight and efficient feature fusion target detection network in complex environments, and the target detection results are combined with an enhanced SURF feature–matching method to locate the vehicle door frame position. To simplify the network structure, MobileNetv3 is used instead of the backbone network CSPDarknet53, and deep separable convolution is used in the network. To increase the sensitivity of the network to vehicle door frame targets in complex environments, an improved convolutional block attention module is added to the pyramid attention with simple network backbones. Moreover, adaptive spatial feature fusion is introduced into the network to fully use the features at different scales for more effective feature fusion. Compared with YOLOv4, the number of network parameters is reduced by 73.8%, the mAP is improved by 1.35%, and the detection speed is increased by 28.7%. The experimental results demonstrate that the positioning accuracy of the system is 0.745 mm, which meets the positioning measurement error of less than 1 cm required for the vehicle door frame. The paper also compares our findings with other network models. The results show that the method achieves a good balance between detection speed and detection accuracy, satisfying the task of identifying vehicle door frames in complex environments with good detection results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
maclogos完成签到,获得积分10
7秒前
焚心结完成签到 ,获得积分0
8秒前
雪花完成签到 ,获得积分10
9秒前
Young完成签到 ,获得积分10
10秒前
rotator发布了新的文献求助10
11秒前
21秒前
Neew完成签到 ,获得积分10
21秒前
迅速的幻雪完成签到 ,获得积分10
28秒前
蒋灵馨完成签到 ,获得积分10
50秒前
科研临床两手抓完成签到 ,获得积分10
54秒前
naczx完成签到,获得积分0
54秒前
露露完成签到 ,获得积分10
1分钟前
怕黑道消完成签到 ,获得积分10
1分钟前
digger2023完成签到 ,获得积分10
1分钟前
乐仔发布了新的文献求助10
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
hqq完成签到,获得积分10
1分钟前
自然的含蕾完成签到 ,获得积分10
1分钟前
风起枫落完成签到 ,获得积分10
1分钟前
1分钟前
xuli21315完成签到 ,获得积分10
1分钟前
枫林摇曳完成签到 ,获得积分10
1分钟前
闲云野鹤发布了新的文献求助10
1分钟前
宇文雨文完成签到 ,获得积分10
1分钟前
1分钟前
闲云野鹤完成签到,获得积分10
2分钟前
今天开心吗完成签到 ,获得积分10
2分钟前
李爱国应助乐仔采纳,获得10
2分钟前
ananan完成签到,获得积分10
2分钟前
coolplex完成签到 ,获得积分10
2分钟前
肖果完成签到 ,获得积分10
3分钟前
huanghe完成签到,获得积分10
3分钟前
3分钟前
charih完成签到 ,获得积分10
3分钟前
乐仔发布了新的文献求助10
3分钟前
科目三应助ananan采纳,获得10
3分钟前
酷波er应助xiiin采纳,获得10
3分钟前
3分钟前
3分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477509
求助须知:如何正确求助?哪些是违规求助? 3068936
关于积分的说明 9110233
捐赠科研通 2760462
什么是DOI,文献DOI怎么找? 1514928
邀请新用户注册赠送积分活动 700486
科研通“疑难数据库(出版商)”最低求助积分说明 699617