已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

The role of reinforcement learning and value-based decision-making frameworks in understanding food choice and eating behaviors

过度消费 强化学习 激励显著性 心理学 食物选择 钢筋 认知心理学 神经认知 行为改变 行为经济学 社会心理学 发展心理学 认知 计算机科学 上瘾 人工智能 医学 神经科学 经济 微观经济学 病理 生产(经济)
作者
Alaina L. Pearce,Bari Fuchs,Kathleen Keller
出处
期刊:Frontiers in Nutrition [Frontiers Media SA]
卷期号:9 被引量:6
标识
DOI:10.3389/fnut.2022.1021868
摘要

The obesogenic food environment includes easy access to highly-palatable, energy-dense, “ultra-processed” foods that are heavily marketed to consumers; therefore, it is critical to understand the neurocognitive processes the underlie overeating in response to environmental food-cues (e.g., food images, food branding/advertisements). Eating habits are learned through reinforcement, which is the process through which environmental food cues become valued and influence behavior. This process is supported by multiple behavioral control systems (e.g., Pavlovian, Habitual, Goal-Directed). Therefore, using neurocognitive frameworks for reinforcement learning and value-based decision-making can improve our understanding of food-choice and eating behaviors. Specifically, the role of reinforcement learning in eating behaviors was considered using the frameworks of (1) Sign-versus Goal-Tracking Phenotypes; (2) Model-Free versus Model-Based; and (3) the Utility or Value-Based Model. The sign-and goal-tracking phenotypes may contribute a mechanistic insight on the role of food-cue incentive salience in two prevailing models of overconsumption–the Extended Behavioral Susceptibility Theory and the Reactivity to Embedded Food Cues in Advertising Model. Similarly, the model-free versus model-based framework may contribute insight to the Extended Behavioral Susceptibility Theory and the Healthy Food Promotion Model. Finally, the value-based model provides a framework for understanding how all three learning systems are integrated to influence food choice. Together, these frameworks can provide mechanistic insight to existing models of food choice and overconsumption and may contribute to the development of future prevention and treatment efforts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zn应助swordlee采纳,获得10
3秒前
wendy完成签到,获得积分10
13秒前
林狗完成签到 ,获得积分10
15秒前
Nature完成签到,获得积分10
19秒前
19秒前
伊笙完成签到 ,获得积分10
21秒前
22秒前
冬冬发布了新的文献求助10
24秒前
三三完成签到 ,获得积分10
24秒前
几米完成签到 ,获得积分10
25秒前
小马甲应助科研通管家采纳,获得10
26秒前
科目三应助科研通管家采纳,获得10
26秒前
在水一方应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
26秒前
科研通AI5应助科研通管家采纳,获得10
27秒前
666完成签到 ,获得积分10
27秒前
Drew完成签到,获得积分10
28秒前
SciGPT应助孟一天采纳,获得10
29秒前
优雅的冷卉完成签到 ,获得积分10
32秒前
32秒前
赘婿应助镜哥采纳,获得10
35秒前
35秒前
摆烂完成签到 ,获得积分10
36秒前
James发布了新的文献求助10
37秒前
领导范儿应助xh采纳,获得10
42秒前
垚祎完成签到 ,获得积分10
42秒前
43秒前
默默的筝完成签到 ,获得积分10
46秒前
镜哥发布了新的文献求助10
49秒前
HR112应助swordlee采纳,获得10
49秒前
上官完成签到 ,获得积分10
54秒前
XJT007完成签到 ,获得积分10
55秒前
科研通AI5应助敬骞采纳,获得10
58秒前
mostspecial完成签到,获得积分10
1分钟前
研友_VZG7GZ应助佳仔采纳,获得10
1分钟前
冬冬完成签到,获得积分10
1分钟前
1分钟前
镜哥完成签到,获得积分10
1分钟前
打打应助干净问筠采纳,获得10
1分钟前
乐乐应助平淡的帆布鞋采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555605
求助须知:如何正确求助?哪些是违规求助? 3131310
关于积分的说明 9390527
捐赠科研通 2830903
什么是DOI,文献DOI怎么找? 1556204
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803