Deciphering the Catalytic Mechanism of Peroxidase-like Activity of Iron Sulfide Nanozymes

硫化铁 硫化物 材料科学 纳米材料 催化作用 机制(生物学) 纳米技术 化学 冶金 硫黄 有机化学 哲学 认识论
作者
Haolin Cao,Ye‐Fei Yuan,Runze Zhao,Wei Shi,Jing Jiang,Yang Gao,Lei Chen,Lizeng Gao
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (24): 30958-30966 被引量:5
标识
DOI:10.1021/acsami.4c06024
摘要

Iron sulfide nanomaterials represented by FeS2 and Fe3S4 nanozymes have attracted increasing attention due to their biocompatibility and peroxidase-like (POD-like) catalytic activity in disease diagnosis and treatments. However, the mechanism responsible for their POD-like activities remains unclear. Herein, taking the oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 on FeS2(100) and Fe3S4(001) surfaces, the catalytic mechanism was investigated in detail using density functional theory (DFT) calculations and experimental characterizations. Our experimental results showed that the catalytic activity of FeS2 nanozymes was significantly higher than that of Fe3S4 nanozymes. Our DFT calculations indicated that the surface iron ions of iron sulfide nanozymes could effectively catalyze the production of HO• radicals via the interactions between Fe 3d electrons and the frontier orbitals of H2O2 in the range of −10 to 5 eV. However, FeS2 nanozymes exhibited higher POD-like activity due to the surface Fe(II) binding to H2O2, forming inner-orbital complexes, which results in a larger binding energy and a smaller energy barrier for the base-like decomposition of H2O2. In contrast, the surface iron ions of Fe3S4 nanozymes bind to H2O2, forming outer-orbital complexes, which results in a smaller binding energy and a larger energy barrier for the base-like decomposition of H2O2. The charge transfer analysis showed that FeS2 nanozymes transferred 0.12 e and Fe3S4 nanozymes transferred 0.05 e from their surface iron ions to H2O2, respectively. The simulations were consistent with the experimental observations that the FeS2 nanozymes had a greater affinity for H2O2 compared to that of Fe3S4 nanozymes. This work provides a theoretical foundation for the rational design and accurate preparation of iron sulfide functional nanozymes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
请叫我风吹麦浪应助yu采纳,获得10
刚刚
天桂星发布了新的文献求助10
刚刚
1111发布了新的文献求助10
1秒前
Zachia发布了新的文献求助10
1秒前
华仔应助颂可采纳,获得10
1秒前
乐乐应助皮念寒采纳,获得10
2秒前
糖糖发布了新的文献求助10
2秒前
evermore发布了新的文献求助10
3秒前
4秒前
张华完成签到,获得积分10
5秒前
吃吃发布了新的文献求助10
5秒前
青颜发布了新的文献求助10
5秒前
安静以南完成签到,获得积分10
6秒前
6秒前
李健应助嗳7采纳,获得10
7秒前
星辰大海应助嘻嘻采纳,获得10
7秒前
淡写完成签到 ,获得积分10
7秒前
9秒前
9秒前
无聊完成签到,获得积分10
9秒前
KARRY应助苏州河采纳,获得10
9秒前
cocolu应助木叶采纳,获得10
11秒前
11秒前
劲秉应助小申采纳,获得10
11秒前
12秒前
元不二发布了新的文献求助10
12秒前
12秒前
碧蓝问梅发布了新的文献求助10
13秒前
14秒前
16秒前
顾矜应助天桂星采纳,获得10
16秒前
16秒前
11111完成签到,获得积分10
16秒前
华仔应助荡秋千的猴子采纳,获得10
16秒前
不会取名字完成签到,获得积分10
16秒前
17秒前
17秒前
17秒前
潇洒凝天发布了新的文献求助10
18秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470572
求助须知:如何正确求助?哪些是违规求助? 3063599
关于积分的说明 9084461
捐赠科研通 2754032
什么是DOI,文献DOI怎么找? 1511188
邀请新用户注册赠送积分活动 698333
科研通“疑难数据库(出版商)”最低求助积分说明 698221