窄带
光学
激光器
宽带
和频产生
波长
谱线
悬空债券
卷积(计算机科学)
物理
计算物理学
光电子学
非线性光学
计算机科学
量子力学
机器学习
硅
人工神经网络
作者
Kai Niu,Hongfei Wang,R. A. Marcus
标识
DOI:10.1073/pnas.2402550121
摘要
Earlier sum frequency generation (SFG) experiments involve one infrared and one visible laser, and a measurement of the intensity of the response, yielding data on the surface sensitive properties of the sample. Recently, both the real and imaginary components of the susceptibility were measured in two different sets of experiments. In one set, a broadband infrared laser was used, permitting observations at very short times, while in another set the infrared laser was narrowband, permitting higher spectral resolution. The differences in the spectrum obtained by the two will be most evident in studying narrow absorption bands, e.g., the band due to dangling OH bonds at a water interface. The direct comparisons in the integrated amplitude (sum rule) of the imaginary part of the dangling OH bond region differ by a factor of 3. Due to variations in experimental setup and data processing, corrections were made for the quartz reference, Fresnel factors, and the incident visible laser wavelength. After the corrections, the agreement differs now by the factors of 1.1 within broadband and narrowband groups and the two groups now differ by a factor of 1.5. The 1.5 factor may arise from the extra heating of the more powerful broadband laser system on the water surface. The convolution from the narrowband SFG spectrum to the broadband SFG spectrum is also investigated and it does not affect the sum rule. Theory and narrowband experiments are compared using the sum rule and agree to a factor of 1.3 with no adjustable parameters.
科研通智能强力驱动
Strongly Powered by AbleSci AI