A model-free variable screening method for optimal treatment regimes with high-dimensional survival data

数学 变量(数学) 统计 应用数学 计量经济学 数学分析
作者
Cheng‐Han Yang,Yu‐Jen Cheng
出处
期刊:Biometrika [Oxford University Press]
卷期号:111 (4): 1369-1386 被引量:1
标识
DOI:10.1093/biomet/asae022
摘要

Summary We propose a model-free variable screening method for the optimal treatment regime with high-dimensional survival data. The proposed screening method provides a unified framework to select the active variables in a prespecified target population, including the treated group as a special case. Based on this framework, the optimal treatment regime is exactly the optimal classifier that minimizes a weighted misclassification error rate, with weights associated with survival outcome variables, the censoring distribution and a prespecified target population. Our main contribution involves reformulating the weighted classification problem into a classification problem within a hypothetical population, where the observed data can be viewed as a sample obtained from outcome-dependent sampling, with the selection probability inversely proportional to the weights. Consequently, we introduce the weighted Kolmogorov–Smirnov approach for selecting active variables in the optimal treatment regime, extending the conventional Kolmogorov–Smirnov method for binary classification. Additionally, the proposed screening method exhibits two levels of robustness. The first level of robustness is achieved because the proposed method does not require any model assumptions for the survival outcome on treatment and covariates, whereas the other is attained as the form of treatment regimes is allowed to be unspecified even without requiring convex surrogate loss, such as logit loss or hinge loss. As a result, the proposed screening method is robust to model misspecifications, and nonparametric learning methods such as random forests and boosting can be applied to those selected variables for further analysis. The theoretical properties of the proposed method are established. The performance of the proposed method is examined through simulation studies and illustrated by a lung cancer dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
问天发布了新的文献求助10
刚刚
1秒前
1秒前
大个应助llll采纳,获得10
2秒前
充电宝应助tt采纳,获得10
2秒前
2秒前
2秒前
ShuyueXue发布了新的文献求助10
2秒前
TOF完成签到,获得积分10
3秒前
zzz完成签到,获得积分10
3秒前
3秒前
ju龙哥发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
米酒完成签到,获得积分10
5秒前
qiuyue发布了新的文献求助10
6秒前
zxm发布了新的文献求助30
6秒前
zq123发布了新的文献求助10
7秒前
小蘑菇应助dududu采纳,获得10
7秒前
搜集达人应助诚心的傲芙采纳,获得10
7秒前
桐桐应助wxr采纳,获得10
7秒前
ZhouTY发布了新的文献求助10
8秒前
AJY完成签到,获得积分10
8秒前
bkagyin应助优雅的白山采纳,获得10
8秒前
8秒前
852应助欢喜的荔枝采纳,获得10
9秒前
9秒前
小紫薯发布了新的文献求助10
9秒前
羊颜完成签到,获得积分10
9秒前
10秒前
熊Xi发布了新的文献求助10
10秒前
脑洞疼应助shuang0116采纳,获得10
11秒前
11秒前
深情安青应助高骏伟采纳,获得10
11秒前
12秒前
羊颜发布了新的文献求助10
13秒前
SciGPT应助ShuyueXue采纳,获得10
13秒前
13秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3473983
求助须知:如何正确求助?哪些是违规求助? 3066333
关于积分的说明 9098686
捐赠科研通 2757569
什么是DOI,文献DOI怎么找? 1513039
邀请新用户注册赠送积分活动 699314
科研通“疑难数据库(出版商)”最低求助积分说明 698909