Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: Results from a multicenter Spanish study

接收机工作特性 人工神经网络 肝移植 匹配(统计) 移植 生存分析 回归 医学 统计 内科学 人工智能 计算机科学 数学 病理
作者
Javier Briceño,M. Cruz-Ramírez,M. Prieto,Miguel Navasa,J. Ortiz de Urbina,Rafael Orti,Miguel-Ángel Gómez-Bravo,Alejandra Otero,Evaristo Varo,Santiago Tomé,G. Clemente,Rafael Bañares,Rafael Bárcena,Valentín Cuervas-Mons,G Solórzano,Carmen Vinaixa,Angel Rubín,Jordi Colmenero,A. Valdivieso,Ruben Ciria,César Hervás-Martínez,Manuel de la Mata
出处
期刊:Journal of Hepatology [Elsevier]
卷期号:61 (5): 1020-1028 被引量:75
标识
DOI:10.1016/j.jhep.2014.05.039
摘要

There is an increasing discrepancy between the number of potential liver graft recipients and the number of organs available. Organ allocation should follow the concept of benefit of survival, avoiding human-innate subjectivity. The aim of this study is to use artificial-neural-networks (ANNs) for donor-recipient (D-R) matching in liver transplantation (LT) and to compare its accuracy with validated scores (MELD, D-MELD, DRI, P-SOFT, SOFT, and BAR) of graft survival.64 donor and recipient variables from a set of 1003 LTs from a multicenter study including 11 Spanish centres were included. For each D-R pair, common statistics (simple and multiple regression models) and ANN formulae for two non-complementary probability-models of 3-month graft-survival and -loss were calculated: a positive-survival (NN-CCR) and a negative-loss (NN-MS) model. The NN models were obtained by using the Neural Net Evolutionary Programming (NNEP) algorithm. Additionally, receiver-operating-curves (ROC) were performed to validate ANNs against other scores.Optimal results for NN-CCR and NN-MS models were obtained, with the best performance in predicting the probability of graft-survival (90.79%) and -loss (71.42%) for each D-R pair, significantly improving results from multiple regressions. ROC curves for 3-months graft-survival and -loss predictions were significantly more accurate for ANN than for other scores in both NN-CCR (AUROC-ANN=0.80 vs. -MELD=0.50; -D-MELD=0.54; -P-SOFT=0.54; -SOFT=0.55; -BAR=0.67 and -DRI=0.42) and NN-MS (AUROC-ANN=0.82 vs. -MELD=0.41; -D-MELD=0.47; -P-SOFT=0.43; -SOFT=0.57, -BAR=0.61 and -DRI=0.48).ANNs may be considered a powerful decision-making technology for this dataset, optimizing the principles of justice, efficiency and equity. This may be a useful tool for predicting the 3-month outcome and a potential research area for future D-R matching models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞怪的定帮完成签到,获得积分20
刚刚
别让我误会完成签到 ,获得积分10
1秒前
Tyranny完成签到 ,获得积分10
3秒前
4秒前
5秒前
6秒前
zhangwei应助niao采纳,获得10
7秒前
8秒前
9秒前
seven完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
小二郎应助萧水白采纳,获得100
15秒前
wyl发布了新的文献求助10
15秒前
16秒前
lamry发布了新的文献求助10
16秒前
Goat完成签到,获得积分10
17秒前
18秒前
19秒前
慕青应助wyl采纳,获得10
21秒前
jie发布了新的文献求助10
21秒前
wanci应助lai采纳,获得10
21秒前
上官若男应助Shuo Yang采纳,获得10
22秒前
22秒前
花花发布了新的文献求助10
24秒前
tttt完成签到 ,获得积分10
25秒前
qiuyue完成签到,获得积分10
25秒前
Uluru完成签到,获得积分10
27秒前
包谷冬完成签到 ,获得积分0
27秒前
谨慎的如风完成签到,获得积分10
27秒前
不配.应助科研通管家采纳,获得10
27秒前
隐形曼青应助科研通管家采纳,获得10
28秒前
萧水白应助科研通管家采纳,获得50
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
NexusExplorer应助科研通管家采纳,获得10
28秒前
情怀应助詹卫卫采纳,获得10
28秒前
suuri发布了新的文献求助10
28秒前
30秒前
30秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147980
求助须知:如何正确求助?哪些是违规求助? 2798977
关于积分的说明 7833117
捐赠科研通 2456104
什么是DOI,文献DOI怎么找? 1307127
科研通“疑难数据库(出版商)”最低求助积分说明 628062
版权声明 601620