Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: Results from a multicenter Spanish study

接收机工作特性 人工神经网络 肝移植 匹配(统计) 移植 生存分析 回归 医学 统计 内科学 人工智能 计算机科学 数学 病理
作者
Javier Briceño,M. Cruz-Ramírez,M. Prieto,Miguel Navasa,J. Ortiz de Urbina,Rafael Orti,Miguel-Ángel Gómez-Bravo,Alejandra Otero,Evaristo Varo,Santiago Tomé,G. Clemente,Rafael Bañares,Rafael Bárcena,Valentín Cuervas-Mons,G Solórzano,Carmen Vinaixa,Angel Rubín,Jordi Colmenero,A. Valdivieso,Ruben Ciria,César Hervás-Martínez,Manuel de la Mata
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:61 (5): 1020-1028 被引量:75
标识
DOI:10.1016/j.jhep.2014.05.039
摘要

There is an increasing discrepancy between the number of potential liver graft recipients and the number of organs available. Organ allocation should follow the concept of benefit of survival, avoiding human-innate subjectivity. The aim of this study is to use artificial-neural-networks (ANNs) for donor-recipient (D-R) matching in liver transplantation (LT) and to compare its accuracy with validated scores (MELD, D-MELD, DRI, P-SOFT, SOFT, and BAR) of graft survival.64 donor and recipient variables from a set of 1003 LTs from a multicenter study including 11 Spanish centres were included. For each D-R pair, common statistics (simple and multiple regression models) and ANN formulae for two non-complementary probability-models of 3-month graft-survival and -loss were calculated: a positive-survival (NN-CCR) and a negative-loss (NN-MS) model. The NN models were obtained by using the Neural Net Evolutionary Programming (NNEP) algorithm. Additionally, receiver-operating-curves (ROC) were performed to validate ANNs against other scores.Optimal results for NN-CCR and NN-MS models were obtained, with the best performance in predicting the probability of graft-survival (90.79%) and -loss (71.42%) for each D-R pair, significantly improving results from multiple regressions. ROC curves for 3-months graft-survival and -loss predictions were significantly more accurate for ANN than for other scores in both NN-CCR (AUROC-ANN=0.80 vs. -MELD=0.50; -D-MELD=0.54; -P-SOFT=0.54; -SOFT=0.55; -BAR=0.67 and -DRI=0.42) and NN-MS (AUROC-ANN=0.82 vs. -MELD=0.41; -D-MELD=0.47; -P-SOFT=0.43; -SOFT=0.57, -BAR=0.61 and -DRI=0.48).ANNs may be considered a powerful decision-making technology for this dataset, optimizing the principles of justice, efficiency and equity. This may be a useful tool for predicting the 3-month outcome and a potential research area for future D-R matching models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
zwk发布了新的文献求助30
2秒前
舒适不平完成签到,获得积分10
4秒前
丘比特应助miao采纳,获得10
5秒前
xuxieyu发布了新的文献求助10
5秒前
香蕉觅云应助chen.采纳,获得10
6秒前
yuanqi发布了新的文献求助10
6秒前
sound完成签到,获得积分10
6秒前
爆米花应助LFJ采纳,获得10
6秒前
zsws发布了新的文献求助10
6秒前
拾壹完成签到,获得积分10
7秒前
腾桑完成签到,获得积分20
9秒前
科研通AI5应助灰灰采纳,获得30
10秒前
呆萌松鼠完成签到,获得积分10
10秒前
受伤灵薇完成签到,获得积分10
10秒前
suibianba应助DustRain采纳,获得10
11秒前
12秒前
13秒前
Kidmuse完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
贾霆发布了新的文献求助10
17秒前
Owen应助安静海菡采纳,获得10
18秒前
chen.发布了新的文献求助10
18秒前
18秒前
lst完成签到,获得积分10
19秒前
祖诗云应助zaddy0905采纳,获得30
19秒前
20秒前
isak发布了新的文献求助10
21秒前
HD完成签到,获得积分10
21秒前
DustRain完成签到,获得积分20
22秒前
22秒前
23秒前
爆米花应助科研通管家采纳,获得10
24秒前
隐形曼青应助科研通管家采纳,获得10
24秒前
共享精神应助科研通管家采纳,获得10
24秒前
PurityL发布了新的文献求助10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
ALUMINUM STANDARDS AND DATA 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3668076
求助须知:如何正确求助?哪些是违规求助? 3226524
关于积分的说明 9769880
捐赠科研通 2936484
什么是DOI,文献DOI怎么找? 1608572
邀请新用户注册赠送积分活动 759677
科研通“疑难数据库(出版商)”最低求助积分说明 735474