Use of artificial intelligence as an innovative donor-recipient matching model for liver transplantation: Results from a multicenter Spanish study

接收机工作特性 人工神经网络 肝移植 匹配(统计) 移植 生存分析 回归 医学 统计 内科学 人工智能 计算机科学 数学 病理
作者
Javier Briceño,M. Cruz-Ramírez,M. Prieto,Miguel Navasa,J. Ortiz de Urbina,Rafael Orti,Miguel-Ángel Gómez-Bravo,Alejandra Otero,Evaristo Varo,Santiago Tomé,G. Clemente,Rafael Bañares,Rafael Bárcena,Valentín Cuervas-Mons,G Solórzano,Carmen Vinaixa,Angel Rubín,Jordi Colmenero,A. Valdivieso,Ruben Ciria,César Hervás-Martínez,Manuel de la Mata
出处
期刊:Journal of Hepatology [Elsevier BV]
卷期号:61 (5): 1020-1028 被引量:75
标识
DOI:10.1016/j.jhep.2014.05.039
摘要

There is an increasing discrepancy between the number of potential liver graft recipients and the number of organs available. Organ allocation should follow the concept of benefit of survival, avoiding human-innate subjectivity. The aim of this study is to use artificial-neural-networks (ANNs) for donor-recipient (D-R) matching in liver transplantation (LT) and to compare its accuracy with validated scores (MELD, D-MELD, DRI, P-SOFT, SOFT, and BAR) of graft survival.64 donor and recipient variables from a set of 1003 LTs from a multicenter study including 11 Spanish centres were included. For each D-R pair, common statistics (simple and multiple regression models) and ANN formulae for two non-complementary probability-models of 3-month graft-survival and -loss were calculated: a positive-survival (NN-CCR) and a negative-loss (NN-MS) model. The NN models were obtained by using the Neural Net Evolutionary Programming (NNEP) algorithm. Additionally, receiver-operating-curves (ROC) were performed to validate ANNs against other scores.Optimal results for NN-CCR and NN-MS models were obtained, with the best performance in predicting the probability of graft-survival (90.79%) and -loss (71.42%) for each D-R pair, significantly improving results from multiple regressions. ROC curves for 3-months graft-survival and -loss predictions were significantly more accurate for ANN than for other scores in both NN-CCR (AUROC-ANN=0.80 vs. -MELD=0.50; -D-MELD=0.54; -P-SOFT=0.54; -SOFT=0.55; -BAR=0.67 and -DRI=0.42) and NN-MS (AUROC-ANN=0.82 vs. -MELD=0.41; -D-MELD=0.47; -P-SOFT=0.43; -SOFT=0.57, -BAR=0.61 and -DRI=0.48).ANNs may be considered a powerful decision-making technology for this dataset, optimizing the principles of justice, efficiency and equity. This may be a useful tool for predicting the 3-month outcome and a potential research area for future D-R matching models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tian发布了新的文献求助10
1秒前
无限的雨梅完成签到 ,获得积分10
1秒前
1秒前
tca2204完成签到,获得积分10
2秒前
Yolo完成签到,获得积分10
2秒前
3秒前
考啥都上岸完成签到,获得积分10
3秒前
hh发布了新的文献求助10
4秒前
223311完成签到,获得积分10
5秒前
Ice_zhao完成签到,获得积分10
5秒前
6秒前
Ava应助一番采纳,获得30
7秒前
ggbang发布了新的文献求助10
7秒前
zz321完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
WuFen完成签到 ,获得积分10
9秒前
9秒前
Baraka完成签到,获得积分10
10秒前
H与K完成签到,获得积分10
11秒前
guoguoguo完成签到,获得积分10
11秒前
叮叮叮完成签到 ,获得积分10
11秒前
余真谛应助Ice_zhao采纳,获得10
11秒前
Dandy完成签到,获得积分10
12秒前
欣慰的书本完成签到 ,获得积分10
12秒前
子非鱼完成签到,获得积分10
12秒前
13秒前
nature完成签到,获得积分10
13秒前
拓跋箴完成签到,获得积分10
13秒前
ggbang完成签到,获得积分10
13秒前
凉风送信完成签到,获得积分10
14秒前
14秒前
mqq发布了新的文献求助10
14秒前
huangqqk完成签到,获得积分10
14秒前
zzzzzx发布了新的文献求助10
14秒前
情怀应助pazhao采纳,获得10
14秒前
14秒前
CipherSage应助mouset270采纳,获得30
15秒前
OhOHOh完成签到,获得积分10
16秒前
汉堡包应助tian采纳,获得10
16秒前
愉快书琴完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960190
求助须知:如何正确求助?哪些是违规求助? 3506348
关于积分的说明 11129231
捐赠科研通 3238527
什么是DOI,文献DOI怎么找? 1789763
邀请新用户注册赠送积分活动 871900
科研通“疑难数据库(出版商)”最低求助积分说明 803095