Evidence for Independent Genetic Influences on Fat Mass and Body Mass Index in a Pediatric Twin Sample

体质指数 遗传力 双胞胎研究 肥胖 医学 加性遗传效应 结构方程建模 遗传变异 基因-环境相互作用 人口学 生理学 遗传学 生物 内科学 基因 环境卫生 基因型 统计 人口 社会学 数学
作者
Myles S. Faith,Angelo Pietrobelli,Christopher Nuñez,Moonseong Heo,Steven B. Heymsfield,David B. Allison
出处
期刊:Pediatrics [American Academy of Pediatrics]
卷期号:104 (1): 61-67 被引量:120
标识
DOI:10.1542/peds.104.1.61
摘要

Insight into genetic and environmental influences on fat mass, independent of body mass index (BMI; kg/m2), is expected to enhance methods for treating pediatric obesity. However, few studies have estimated the heritability of fat mass in pediatric samples, and those conducted have relied primarily on BMI measurements. PRESENT STUDY: Using bioimpedance analysis, the present study tested a series of hypotheses predicting significant genetic and environmental influences on percent body fat (PBF) above and beyond BMI. Subjects were 66 pairs of twins, including 41 monozygotic and 25 dizygotic pairs, from 3 to 17 years of age. Structural equation modeling tested hypotheses, adjusting for demographic variables.Analyses indicated significant genetic influences on PBF, with genes estimated to account for 75% to 80% of the phenotypic variation. The remaining variation was attributable to nonshared environmental influences. Multivariate analyses revealed sizable genetic correlations and environmental correlations between BMI and PBF (rg =.74 and re =.67, respectively), suggesting that some genes and environmental experiences influence both phenotypes. However, analyses confirmed genetic and environmental influences on PBF above and beyond BMI. For example, 62.5% of the total genetic variation in PBF was attributable to genes that influenced PBF but not BMI.There seems to be a substantial genetic contribution to fat mass distinct from BMI in a sample of children and adolescents. Studies testing putative genetic or environmental determinants of pediatric obesity might be strengthened further by including research-based body composition methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Akim应助mmmmb采纳,获得30
3秒前
无限钻石完成签到,获得积分10
4秒前
5秒前
张张完成签到 ,获得积分10
6秒前
爆米花完成签到,获得积分10
7秒前
8秒前
雪妮完成签到 ,获得积分10
8秒前
脑洞疼应助liusong采纳,获得10
10秒前
两面性发布了新的文献求助10
10秒前
泛泛之交完成签到,获得积分10
11秒前
咕噜噜完成签到,获得积分10
15秒前
神说应助马喽打工仔采纳,获得10
15秒前
cccttt完成签到,获得积分10
16秒前
fjh应助JC采纳,获得10
17秒前
yuzhu完成签到,获得积分10
18秒前
十三香傻瓜完成签到,获得积分10
19秒前
科研通AI5应助观自在采纳,获得30
19秒前
袁梦完成签到,获得积分10
19秒前
无花果应助跳跃的书南采纳,获得10
21秒前
gxl完成签到,获得积分10
22秒前
23秒前
27秒前
爱的魔力转圈圈完成签到,获得积分10
28秒前
lv应助ynuxb采纳,获得10
28秒前
慕青应助晓晓马儿采纳,获得10
28秒前
伊伊完成签到,获得积分20
29秒前
fjh应助Xorgan采纳,获得10
30秒前
叶123发布了新的文献求助10
30秒前
星辰大海应助万幸鹿采纳,获得10
31秒前
隐形曼青应助十三香傻瓜采纳,获得10
31秒前
伊伊发布了新的文献求助10
32秒前
叶123完成签到,获得积分10
36秒前
李天浩完成签到 ,获得积分10
37秒前
Imperry完成签到,获得积分10
42秒前
勤劳的沅发布了新的文献求助10
43秒前
ding应助两面性采纳,获得10
46秒前
茄子爱睡觉完成签到,获得积分10
46秒前
47秒前
韩soso完成签到,获得积分10
47秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734585
求助须知:如何正确求助?哪些是违规求助? 3278533
关于积分的说明 10009882
捐赠科研通 2995161
什么是DOI,文献DOI怎么找? 1643223
邀请新用户注册赠送积分活动 781009
科研通“疑难数据库(出版商)”最低求助积分说明 749196