Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires

碲化铋 材料科学 热导率 热电效应 塞贝克系数 微晶 热电材料 纳米线 声子散射 平均自由程 单晶硅 凝聚态物理 散射 光电子学 光学 复合材料 冶金 物理 热力学
作者
Anastassios Mavrokefalos,Arden L. Moore,Michael T. Pettes,Li Shi,Wei Wang,Xiaoguang Li
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:105 (10) 被引量:153
标识
DOI:10.1063/1.3133145
摘要

The thermoelectric properties and crystal structure of individual electrodeposited bismuth telluride nanowires (NWs) were characterized using a microfabricated measurement device and transmission electron microscopy. Annealing in hydrogen was used to obtain electrical contact between the NW and the supporting Pt electrodes. By fitting the measured Seebeck coefficient with a two-band model, the NW samples were determined to be highly n-type doped. Higher thermal conductivity and electrical conductivity were observed in a 52 nm diameter monocrystalline NW than a 55 nm diameter polycrystalline NW. The electron mobility of the monocrystalline NW was found to be about 19% lower than that of bulk crystal at a similar carrier concentration and about 2.5 times higher than that of the polycrystalline NW. The specularity parameter for electron scattering by the NW surface was determined to be about 0.7 and partially specular and partially diffuse, leading to a reduction in the electron mean-free path from 61 nm in the bulk to about 40 nm in the 52 nm NW. Because of the already short phonon mean-free path of about 3 nm in bulk bismuth telluride, diffuse phonon-surface scattering is expected to reduce the lattice thermal conductivity of the 52–55 nm diameter NWs by only about 20%, which is smaller than the uncertainty in the extracted lattice thermal conductivity based on the measured total thermal conductivity and calculated electron thermal conductivity. Although the lattice thermal conductivity of the polycrystalline NW is likely lower than the bulk values, the lower thermal conductivity observed in this polycrystalline sample is mainly caused by the lower electron concentration and mobility. For both samples, the thermoelectric figure of merit (ZT) increases with temperature and is about 0.1 at a temperature of 400 K. The low ZT compared to that of bulk crystals is mainly caused by a high doping level, suggesting the need for better control of the chemical composition in order to improve the ZT of the electrodeposited NWs. Moreover, bismuth telluride NWs with diameter less than 10 nm would be required for substantial suppression of the lattice thermal conductivity as well as experimental verification of theoretical predictions of power factor enhancement in quantum wires. Such stringent diameter requirement can be relaxed in other NW systems with longer bulk phonon mean-free path or smaller effective mass and thus longer electron wavelength than those in bulk bismuth telluride.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
打打应助li采纳,获得10
1秒前
1秒前
君故发布了新的文献求助10
1秒前
李博士完成签到,获得积分10
2秒前
fanghongjian发布了新的文献求助10
2秒前
vv完成签到 ,获得积分10
2秒前
3秒前
5秒前
晓畅完成签到,获得积分10
7秒前
科研通AI6.1应助对称破缺采纳,获得10
10秒前
刘十一完成签到 ,获得积分10
10秒前
10秒前
慢半拍完成签到,获得积分10
10秒前
von完成签到,获得积分10
10秒前
12秒前
12秒前
12秒前
12秒前
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
12秒前
Criminology34应助科研通管家采纳,获得10
12秒前
17263365721完成签到 ,获得积分10
12秒前
冬天的回忆完成签到 ,获得积分10
12秒前
风清扬应助科研通管家采纳,获得30
13秒前
李健应助科研通管家采纳,获得10
13秒前
dangdang应助科研通管家采纳,获得40
13秒前
13秒前
Frank应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
爆米花应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
14秒前
Frank应助科研通管家采纳,获得10
14秒前
14秒前
烟花应助科研通管家采纳,获得10
14秒前
泽松应助科研通管家采纳,获得10
14秒前
14秒前
大个应助科研通管家采纳,获得50
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742315
求助须知:如何正确求助?哪些是违规求助? 5407721
关于积分的说明 15344704
捐赠科研通 4883721
什么是DOI,文献DOI怎么找? 2625220
邀请新用户注册赠送积分活动 1574084
关于科研通互助平台的介绍 1531060