🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

MetaKernel: Learning Variational Random Features With Limited Labels

计算机科学 判别式 人工智能 推论 机器学习 元学习(计算机科学) 条件随机场 水准点(测量) 背景(考古学) 结构化预测 特征学习 特征(语言学) 模式识别(心理学) 任务(项目管理) 古生物学 哲学 经济 生物 管理 地理 语言学 大地测量学
作者
Yingjun Du,Haoliang Sun,Xiantong Zhen,Jun Xu,Yilong Yin,Ling Shao,Cees G. M. Snoek
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (3): 1464-1478 被引量:3
标识
DOI:10.1109/tpami.2022.3154930
摘要

Few-shot learning deals with the fundamental and challenging problem of learning from a few annotated samples, while being able to generalize well on new tasks. The crux of few-shot learning is to extract prior knowledge from related tasks to enable fast adaptation to a new task with a limited amount of data. In this paper, we propose meta-learning kernels with random Fourier features for few-shot learning, we call MetaKernel. Specifically, we propose learning variational random features in a data-driven manner to obtain task-specific kernels by leveraging the shared knowledge provided by related tasks in a meta-learning setting. We treat the random feature basis as the latent variable, which is estimated by variational inference. The shared knowledge from related tasks is incorporated into a context inference of the posterior, which we achieve via a long-short term memory module. To establish more expressive kernels, we deploy conditional normalizing flows based on coupling layers to achieve a richer posterior distribution over random Fourier bases. The resultant kernels are more informative and discriminative, which further improves the few-shot learning. To evaluate our method, we conduct extensive experiments on both few-shot image classification and regression tasks. A thorough ablation study demonstrates that the effectiveness of each introduced component in our method. The benchmark results on fourteen datasets demonstrate MetaKernel consistently delivers at least comparable and often better performance than state-of-the-art alternatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
王春琰完成签到 ,获得积分10
3秒前
4秒前
哭泣的冰海完成签到,获得积分10
4秒前
Szw666完成签到,获得积分10
4秒前
抓个小孩完成签到 ,获得积分10
5秒前
Zbmd完成签到,获得积分10
5秒前
海三花完成签到 ,获得积分10
6秒前
善学以致用应助indigo采纳,获得10
8秒前
8秒前
所所应助3233129092采纳,获得10
8秒前
8秒前
luoman5656完成签到,获得积分10
10秒前
无私的馒头完成签到,获得积分10
11秒前
科研通AI5应助张明玉采纳,获得10
11秒前
啦啦完成签到,获得积分10
11秒前
13秒前
调皮老头完成签到,获得积分10
15秒前
Augusterny完成签到 ,获得积分10
16秒前
16秒前
flttlhc完成签到,获得积分10
16秒前
19秒前
潘能猫完成签到,获得积分10
21秒前
21秒前
chencai发布了新的文献求助10
21秒前
22秒前
嗷嗷嗷啊完成签到,获得积分10
22秒前
23秒前
BetterH完成签到 ,获得积分10
23秒前
韩莎莎发布了新的文献求助10
25秒前
26秒前
27秒前
魔法披风完成签到,获得积分10
28秒前
斗图不怕输完成签到,获得积分10
30秒前
暴躁的沂完成签到,获得积分10
31秒前
31秒前
君君君发布了新的文献求助10
31秒前
31秒前
顾矜应助chencai采纳,获得10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600665
求助须知:如何正确求助?哪些是违规求助? 3169539
关于积分的说明 9561671
捐赠科研通 2875871
什么是DOI,文献DOI怎么找? 1579097
邀请新用户注册赠送积分活动 742380
科研通“疑难数据库(出版商)”最低求助积分说明 725248