全球变暖
环境科学
温室气体
水田
全球变暖潜力
生物量(生态学)
大气科学
甲烷
丰度(生态学)
生态系统
气候变化
空气温度
温室效应
生态学
生物
地质学
作者
Haoyu Qian,Nan Zhang,Junjie Chen,Changqing Chen,Bruce A. Hungate,Junmei Ruan,Shan Huang,Kun Cheng,Zhenwei Song,Pengfu Hou,Bin Zhang,Jun Zhang,Zhen Wang,Xiuying Zhang,Ganghua Li,Zhenghui Liu,Songhan Wang,Guiyao Zhou,Weijian Zhang,Yanfeng Ding,Kees Jan van Groenigen,Yu Jiang
标识
DOI:10.1021/acs.est.2c00738
摘要
Global warming is expected to affect methane (CH4) emissions from rice paddies, one of the largest human-induced sources of this potent greenhouse gas. However, the large variability in warming impacts on CH4 emissions makes it difficult to extrapolate the experimental results over large regions. Here, we show, through meta-analysis and multi-site warming experiments using the free air temperature increase facility, that warming stimulates CH4 emissions most strongly at background air temperatures during the flooded stage of ∼26 °C, with smaller responses of CH4 emissions to warming at lower and higher temperatures. This pattern can be explained by divergent warming responses of plant growth, methanogens, and methanotrophs. The effects of warming on rice biomass decreased with the background air temperature. Warming increased the abundance of methanogens more strongly at the medium air temperature site than the low and high air temperature sites. In contrast, the effects of warming on the abundance of methanotrophs were similar across the three temperature sites. We estimate that 1 °C warming will increase CH4 emissions from paddies in China by 12.6%─substantially higher than the estimates obtained from leading ecosystem models. Our findings challenge model assumptions and suggest that the estimates of future paddy CH4 emissions need to consider both plant and microbial responses to warming.
科研通智能强力驱动
Strongly Powered by AbleSci AI