PregGAN: A prognosis prediction model for breast cancer based on conditional generative adversarial networks

计算机科学 对抗制 人工智能 乳腺癌 机器学习 生成对抗网络 生成语法 癌症 深度学习 医学 内科学
作者
Fan Zhang,Yingqi Zhang,Xiaoke Zhu,Xiaopan Chen,Haishun Du,Xinhong Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:224: 107026-107026 被引量:23
标识
DOI:10.1016/j.cmpb.2022.107026
摘要

Background and Objective: Generative adversarial network (GAN) is able to learn from a set of training data and generate new data with the same characteristics as the training data. Based on the characteristics of GAN, this paper developed its capability as a tool of disease prognosis prediction, and proposed a prognostic model PregGAN based on conditional generative adversarial network (CGAN). Methods: The idea of PregGAN is to generate the prognosis prediction results based on the clinical data of patients. PregGAN added the clinical data as conditions to the training process. Conditions were used as the input to the generator along with noises. The generator synthesized new samples using the noises vectors and the conditions. In order to solve the mode collapse problem during PregGAN training, Wasserstein distance and gradient penalty strategy were used to make the training process more stable. Results: In the prognosis prediction experiments using the METABRIC breast cancer dataset, PregGAN achieved good results, with the average accurate (ACC) of 90.6% and the average AUC (area under curve) of 0.946. Conclusions: Experimental results show that PregGAN is a reliable prognosis predictive model for breast cancer. Due to the strong ability of probability distribution learning, PregGAN can also be used for the prognosis prediction of other diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隋磊发布了新的文献求助30
刚刚
刚刚
2秒前
噗噗星完成签到,获得积分20
3秒前
dyem发布了新的文献求助30
4秒前
慕青应助背后城采纳,获得10
5秒前
果果完成签到,获得积分10
5秒前
dongdongqiang发布了新的文献求助50
6秒前
冷傲凝琴完成签到,获得积分10
7秒前
李健应助pengchengxi采纳,获得10
8秒前
8秒前
fishmire发布了新的文献求助10
8秒前
哈哈哈完成签到,获得积分10
11秒前
俊逸的灵雁完成签到,获得积分20
13秒前
dyem完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
19秒前
ding应助隋磊采纳,获得10
20秒前
20秒前
Fqdgest发布了新的文献求助10
22秒前
22秒前
23秒前
23秒前
骤雨时晴发布了新的文献求助10
24秒前
sss发布了新的文献求助10
25秒前
orixero应助hikh采纳,获得10
25秒前
26秒前
26秒前
FashionBoy应助fishmire采纳,获得10
27秒前
小熊跳舞完成签到,获得积分10
27秒前
28秒前
miuu发布了新的文献求助10
28秒前
研友_VZG7GZ应助dongdongqiang采纳,获得30
28秒前
CodeCraft应助cc采纳,获得10
29秒前
29秒前
博学为农完成签到,获得积分10
30秒前
小熊跳舞发布了新的文献求助10
32秒前
syx发布了新的文献求助10
33秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962236
求助须知:如何正确求助?哪些是违规求助? 3508458
关于积分的说明 11140902
捐赠科研通 3241109
什么是DOI,文献DOI怎么找? 1791341
邀请新用户注册赠送积分活动 872825
科研通“疑难数据库(出版商)”最低求助积分说明 803382