已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

PregGAN: A prognosis prediction model for breast cancer based on conditional generative adversarial networks

计算机科学 对抗制 人工智能 乳腺癌 机器学习 生成对抗网络 生成语法 癌症 深度学习 医学 内科学
作者
Fan Zhang,Yingqi Zhang,Xiaoke Zhu,Xiaopan Chen,Haishun Du,Xinhong Zhang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:224: 107026-107026 被引量:23
标识
DOI:10.1016/j.cmpb.2022.107026
摘要

Background and Objective: Generative adversarial network (GAN) is able to learn from a set of training data and generate new data with the same characteristics as the training data. Based on the characteristics of GAN, this paper developed its capability as a tool of disease prognosis prediction, and proposed a prognostic model PregGAN based on conditional generative adversarial network (CGAN). Methods: The idea of PregGAN is to generate the prognosis prediction results based on the clinical data of patients. PregGAN added the clinical data as conditions to the training process. Conditions were used as the input to the generator along with noises. The generator synthesized new samples using the noises vectors and the conditions. In order to solve the mode collapse problem during PregGAN training, Wasserstein distance and gradient penalty strategy were used to make the training process more stable. Results: In the prognosis prediction experiments using the METABRIC breast cancer dataset, PregGAN achieved good results, with the average accurate (ACC) of 90.6% and the average AUC (area under curve) of 0.946. Conclusions: Experimental results show that PregGAN is a reliable prognosis predictive model for breast cancer. Due to the strong ability of probability distribution learning, PregGAN can also be used for the prognosis prediction of other diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静的毛豆完成签到,获得积分10
1秒前
1秒前
1秒前
星之茧完成签到,获得积分10
2秒前
瓶邪完成签到,获得积分20
2秒前
3秒前
4秒前
星之茧发布了新的文献求助10
5秒前
ding应助落伍少年采纳,获得50
5秒前
6秒前
dan1029发布了新的文献求助10
6秒前
7秒前
吴所畏惧发布了新的文献求助10
9秒前
小强x完成签到 ,获得积分10
9秒前
Wink14551发布了新的文献求助10
12秒前
13秒前
不上课不行完成签到,获得积分10
13秒前
科研通AI5应助高高的凡之采纳,获得10
14秒前
栗子完成签到,获得积分10
16秒前
痴痴的噜完成签到,获得积分10
16秒前
16秒前
幽默的惮发布了新的文献求助10
17秒前
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
华仔应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
Hello应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
在水一方应助科研通管家采纳,获得30
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
18秒前
英俊的铭应助科研通管家采纳,获得10
18秒前
rushows关注了科研通微信公众号
19秒前
科研人完成签到 ,获得积分10
19秒前
潇洒的灵萱完成签到,获得积分10
21秒前
PQ关闭了PQ文献求助
22秒前
23秒前
李善聪发布了新的文献求助10
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538812
求助须知:如何正确求助?哪些是违规求助? 3116497
关于积分的说明 9325545
捐赠科研通 2814404
什么是DOI,文献DOI怎么找? 1546605
邀请新用户注册赠送积分活动 720659
科研通“疑难数据库(出版商)”最低求助积分说明 712136