Android Feature Selection based on Permissions, Intents, and API Calls

特征选择 计算机科学 Android(操作系统) 恶意软件 随机森林 机器学习 人工智能 支持向量机 特征提取 Android恶意软件 特征向量 数据挖掘 操作系统
作者
Fred Guyton,Wei Li,Ling Wang,Ajoy Kumar
标识
DOI:10.1109/sera54885.2022.9806471
摘要

Android is a platform that hosts roughly 99% of known mobile malware to date and is thus the focus of much research efforts in mobile malware detection. One of the main tools used in this effort is supervised machine learning. While a decade of work has made a lot of progress in detection accuracy, there is an obstacle that each stream of research is forced to overcome, feature selection, i.e., determining which attributes of Android are most effective as inputs into machine learning models. This research tackles the feature selection problem by providing the community with an exhaustive analysis of the three primary types of Android features used by researchers: Permissions, Intents and API Calls. We applied a wide spectrum of feature selection techniques including eleven different algorithms which consisted of filter methods, wrapper methods and embedded methods. Results were evaluated with three different supervised learning classifiers, Random Forest, Support Vector Machine and Neural Network, on a dataset with over 119K Android apps and over 400 features. The results showed that using a combination of Permissions, Intents and API Calls produced higher accuracy than using any of those alone or in any other combination. The results also showed that feature selection should be performed on the combined dataset, not by feature type and then combined and that the negative effects of not doing so are more pronounced the larger the feature set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
77完成签到 ,获得积分10
刚刚
Taurus_Ho完成签到,获得积分10
2秒前
3秒前
3秒前
超级白昼发布了新的文献求助10
3秒前
慕航完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
慕航发布了新的文献求助10
8秒前
9秒前
痞老板发布了新的文献求助10
10秒前
wisher完成签到 ,获得积分10
11秒前
13秒前
13秒前
wmy发布了新的文献求助30
13秒前
zlq完成签到,获得积分20
14秒前
搜集达人应助经济采纳,获得10
14秒前
lyx发布了新的文献求助10
16秒前
科研通AI2S应助小马甲采纳,获得10
18秒前
moncypool完成签到,获得积分10
19秒前
zlq发布了新的文献求助50
20秒前
Gtty完成签到,获得积分10
23秒前
wsh发布了新的文献求助10
25秒前
25秒前
25秒前
28秒前
丘比特应助郝宝真采纳,获得10
30秒前
30秒前
槑槑201415完成签到 ,获得积分10
30秒前
霍夜南完成签到 ,获得积分10
32秒前
32秒前
33秒前
达达利亚发布了新的文献求助10
36秒前
柳叶坚刀发布了新的文献求助10
37秒前
37秒前
ademwy发布了新的文献求助10
38秒前
38秒前
39秒前
经竺发布了新的文献求助10
40秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162863
求助须知:如何正确求助?哪些是违规求助? 2813883
关于积分的说明 7902296
捐赠科研通 2473504
什么是DOI,文献DOI怎么找? 1316868
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187